添加稀疏向量 3.0.0 Apache Spark Scala

Adding Sparse Vectors 3.0.0 Apache Spark Scala

我正在尝试创建一个如下添加的函数 two org.apache.spark.ml.linalg.Vector。或者即两个稀疏向量

此向量可能如下所示

(28,[1,2,3,4,7,11,12,13,14,15,17,20,22,23,24,25],[0.13028398104008743,0.23648605632753023,0.7094581689825907,0.13028398104008743,0.23648605632753023,0.0,0.14218861229025295,0.3580566057240087,0.14218861229025295,0.13028398104008743,0.26056796208017485,0.0,0.14218861229025295,0.06514199052004371,0.13028398104008743,0.23648605632753023])

例如

def add_vectors(x: org.apache.spark.ml.linalg.Vector,y:org.apache.spark.ml.linalg.Vector): org.apache.spark.ml.linalg.Vector = {
      
    }

我们来看一个用例

val x = Vectors.sparse(2, List(0), List(1)) // [1, 0]
val y = Vectors.sparse(2, List(1), List(1)) // [0, 1]

I want to output to be 

Vectors.sparse(2, List(0,1), List(1,1)) 

这是他们共享相同索引的另一种情况

val x = Vectors.sparse(2, List(1), List(1))
val y = Vectors.sparse(2, List(1), List(1)) 

这个输出应该是

Vectors.sparse(2, List(1), List(2)) 

我意识到这样做比看起来要难。我研究了一种可能的解决方案,将向量转换为 breeze,将它们添加到 breeze,然后将其转换回向量。例如 。所以我尝试实现这个。

def add_vectors(x: org.apache.spark.ml.linalg.Vector,y:org.apache.spark.ml.linalg.Vector) ={

   val dense_x = x.toDense
   val dense_y = y.toDense

  val bv1 = new DenseVector(dense_x.toArray)
  val bv2 = new DenseVector(dense_y.toArray)

  val vectout = Vectors.dense((bv1 + bv2).toArray)
  vectout
}

然而这让我在最后一行出错

val vectout = Vectors.dense((bv1 + bv2).toArray)

无法解析重载方法 'dense'。 我想知道为什么会出现错误以及解决方法?

为了回答我自己的问题,我不得不考虑向量的稀疏程度。例如稀疏向量需要 3 个参数。维数,一个索引数组,最后是一个值数组。例如

val indices: Array[Int] = Array(1,2)
      val norms: Array[Double] = Array(0.5,0.3)
      val num_int = 4
      val vector: Vector = Vectors.sparse(num_int, indices, norms)

如果我将此 SparseVector 转换为数组,我将得到以下结果。

代码:

 val choiced_array = vector.toArray

 choiced_array.map(element => print(element + " "))

输出:

   [0.0, 0.5,0.3,0.0].

这被认为是它的更密集表示。因此,一旦将两个向量转换为数组,就可以使用以下代码添加它们

val add: Array[Double] = (vector.toArray, vector_2.toArray).zipped.map(_ + _)

这为您提供了另一个同时添加的数组。接下来要创建新的稀疏向量,您需要创建一个 indices 数组,如构造

中所示
 var i = -1;
  val new_indices_pre = add.map( (element:Double) => {
    i = i + 1
    if(element > 0.0)
      i
    else{
      -1
    }
  })

然后让我们过滤掉所有指示该索引为零的 -1 索引指示。

new_indices_pre.filter(element => element != -1)

记得从添加了两个向量的数组中过滤掉 none 个零值。

val final_add = add.filter(element => element > 0.0)

最后,我们可以制作新的稀疏向量

Vectors.sparse(num_int,new_indices,final_add)