Plotnine 组 facet_grid 标签
Plotnine group facet_grid labels
有没有办法在使用 plotnine 的 facet_grid
函数时对标签进行分组?
例如,以下面的 DataFrame 为例(我编造了示例以便您可以重现我的问题。实际上我的 DataFrame 大得多但结构几乎相同):
df_test = pd.DataFrame(data= {'rate_1': [0.0,0.1,0.2,0.3,0.0,0.1,0.2,0.3,0.3,0.2,0.1,0.0],
'rate_2': [0.0,0.1,0.2,0.3,0.0,0.1,0.2,0.3,0.3,0.2,0.1,0.0],
'rate_3':[0.0,0.1,0.2,0.3,0.0,0.1,0.2,0.3,0.3,0.2,0.1,0.0],
'rate_4': [0.0,0.1,0.2,0.3,0.1,0.2,0.3,0.0,0.2,0.3,0.0,0.1],
'samples': [50000, 100000, 50000, 100000,50000, 100000, 50000, 100000,50000, 100000, 50000, 100000],
'model': ['model 1', 'model 2', 'model 3', 'model 4','model 1', 'model 2', 'model 3', 'model 4','model 1', 'model 2', 'model 3', 'model 4'],
'metric': [0.5,0.4,0.3,0.2,0.5,0.4,0.3,0.2,1,0.3,0.4,0.3]})
我创建了以下函数来根据比率、样本大小和模型绘制绝对指标:
# Plotting
my_plot = ggplot(data=df_test, mapping=aes('rate_1', 'rate_2', fill='metric'))
my_plot += geom_tile()
my_plot += theme(axis_text_x=element_text(rotation=90), figure_size=(16, 8), strip_background_x=element_text(width=1.))
my_plot += scale_x_continuous(breaks=[.0, .1, .2, .3, .4, .5])
my_plot += scale_y_continuous(breaks=[.0, .1, .2, .3, .4, .5])
my_plot += facet_grid('rate_3 + samples ~ model + rate_4', labeller=label_value)
my_plot += scale_fill_gradient2(midpoint=0, low='blue', mid="white", high="red")
my_plot
结果图如下所示:
有没有办法在标记 facet_grid 时将模型名称(模型 1、模型 2、模型 3、模型 4)和 rate_4 分组?我正在寻找这样的结果,使得 'columns' 的命名如下(我使用 Excel 进行说明):
谢谢!
感谢 this 提示,我能够通过操作 matplotlib 文本和背景对象来“分组”标签:
# Plotting
my_plot = ggplot(data=df_test, mapping=aes('rate_1', 'rate_2', fill='metric'))
my_plot += geom_tile()
my_plot += theme(axis_text_x=element_text(rotation=90), figure_size=(16, 8), strip_background_x=element_text(width=1.))
my_plot += scale_x_continuous(breaks=[.0, .1, .2, .3, .4, .5])
my_plot += scale_y_continuous(breaks=[.0, .1, .2, .3, .4, .5])
my_plot += facet_grid('rate_3 + samples ~ model + rate_4', labeller=label_value)
my_plot += scale_fill_gradient2(midpoint=0, low='blue', mid="white", high="red")
fig = my_plot.draw()
fig._themeable['strip_text_x'][0].set_text('\n 0.0')
fig._themeable['strip_text_x'][1].set_text('model 1 \n 0.10')
fig._themeable['strip_text_x'][2].set_text('\n 0.20')
fig._themeable['strip_background_x'][0].set_width(3.0)
fig._themeable['strip_text_x'][3].set_text('\n 0.00')
fig._themeable['strip_text_x'][4].set_text('model 2 \n 0.10')
fig._themeable['strip_text_x'][5].set_text('\n 0.20')
fig._themeable['strip_background_x'][3].set_width(3.0)
fig._themeable['strip_text_x'][6].set_text('\n 0.00')
fig._themeable['strip_text_x'][7].set_text('model 3 \n 0.10')
fig._themeable['strip_text_x'][8].set_text('\n 0.20')
fig._themeable['strip_background_x'][6].set_width(3.0)
fig._themeable['strip_text_x'][9].set_text('\n 0.00')
fig._themeable['strip_text_x'][10].set_text('model 4 \n 0.10')
fig._themeable['strip_text_x'][11].set_text('\n 0.20')
fig._themeable['strip_background_x'][9].set_width(3.0)
plt.show()
结果如下:
有没有办法在使用 plotnine 的 facet_grid
函数时对标签进行分组?
例如,以下面的 DataFrame 为例(我编造了示例以便您可以重现我的问题。实际上我的 DataFrame 大得多但结构几乎相同):
df_test = pd.DataFrame(data= {'rate_1': [0.0,0.1,0.2,0.3,0.0,0.1,0.2,0.3,0.3,0.2,0.1,0.0],
'rate_2': [0.0,0.1,0.2,0.3,0.0,0.1,0.2,0.3,0.3,0.2,0.1,0.0],
'rate_3':[0.0,0.1,0.2,0.3,0.0,0.1,0.2,0.3,0.3,0.2,0.1,0.0],
'rate_4': [0.0,0.1,0.2,0.3,0.1,0.2,0.3,0.0,0.2,0.3,0.0,0.1],
'samples': [50000, 100000, 50000, 100000,50000, 100000, 50000, 100000,50000, 100000, 50000, 100000],
'model': ['model 1', 'model 2', 'model 3', 'model 4','model 1', 'model 2', 'model 3', 'model 4','model 1', 'model 2', 'model 3', 'model 4'],
'metric': [0.5,0.4,0.3,0.2,0.5,0.4,0.3,0.2,1,0.3,0.4,0.3]})
我创建了以下函数来根据比率、样本大小和模型绘制绝对指标:
# Plotting
my_plot = ggplot(data=df_test, mapping=aes('rate_1', 'rate_2', fill='metric'))
my_plot += geom_tile()
my_plot += theme(axis_text_x=element_text(rotation=90), figure_size=(16, 8), strip_background_x=element_text(width=1.))
my_plot += scale_x_continuous(breaks=[.0, .1, .2, .3, .4, .5])
my_plot += scale_y_continuous(breaks=[.0, .1, .2, .3, .4, .5])
my_plot += facet_grid('rate_3 + samples ~ model + rate_4', labeller=label_value)
my_plot += scale_fill_gradient2(midpoint=0, low='blue', mid="white", high="red")
my_plot
结果图如下所示:
有没有办法在标记 facet_grid 时将模型名称(模型 1、模型 2、模型 3、模型 4)和 rate_4 分组?我正在寻找这样的结果,使得 'columns' 的命名如下(我使用 Excel 进行说明):
感谢 this 提示,我能够通过操作 matplotlib 文本和背景对象来“分组”标签:
# Plotting
my_plot = ggplot(data=df_test, mapping=aes('rate_1', 'rate_2', fill='metric'))
my_plot += geom_tile()
my_plot += theme(axis_text_x=element_text(rotation=90), figure_size=(16, 8), strip_background_x=element_text(width=1.))
my_plot += scale_x_continuous(breaks=[.0, .1, .2, .3, .4, .5])
my_plot += scale_y_continuous(breaks=[.0, .1, .2, .3, .4, .5])
my_plot += facet_grid('rate_3 + samples ~ model + rate_4', labeller=label_value)
my_plot += scale_fill_gradient2(midpoint=0, low='blue', mid="white", high="red")
fig = my_plot.draw()
fig._themeable['strip_text_x'][0].set_text('\n 0.0')
fig._themeable['strip_text_x'][1].set_text('model 1 \n 0.10')
fig._themeable['strip_text_x'][2].set_text('\n 0.20')
fig._themeable['strip_background_x'][0].set_width(3.0)
fig._themeable['strip_text_x'][3].set_text('\n 0.00')
fig._themeable['strip_text_x'][4].set_text('model 2 \n 0.10')
fig._themeable['strip_text_x'][5].set_text('\n 0.20')
fig._themeable['strip_background_x'][3].set_width(3.0)
fig._themeable['strip_text_x'][6].set_text('\n 0.00')
fig._themeable['strip_text_x'][7].set_text('model 3 \n 0.10')
fig._themeable['strip_text_x'][8].set_text('\n 0.20')
fig._themeable['strip_background_x'][6].set_width(3.0)
fig._themeable['strip_text_x'][9].set_text('\n 0.00')
fig._themeable['strip_text_x'][10].set_text('model 4 \n 0.10')
fig._themeable['strip_text_x'][11].set_text('\n 0.20')
fig._themeable['strip_background_x'][9].set_width(3.0)
plt.show()
结果如下: