清理语料库时 tm 包函数未删除引号和连字符

Quotes and hyphens not removed by tm package functions while cleaning corpus

我正在尝试清理语料库并且我使用了典型的步骤,如下面的代码:

docs<-Corpus(DirSource(path))
docs<-tm_map(docs,content_transformer(tolower))
docs<-tm_map(docs,content_transformer(removeNumbers))
docs<-tm_map(docs,content_transformer(removePunctuation))
docs<-tm_map(docs,removeWords,stopwords('en'))
docs<-tm_map(docs,stripWhitespace)
docs<-tm_map(docs,stemDocument)
dtm<-DocumentTermMatrix(docs)

然而,当我检查矩阵时,有几个单词带有引号,例如: "we" "company" “代码 指引” -已知 -加速

似乎单词本身在引号内,但是当我再次尝试 运行 删除标点符号时,它不起作用。还有一些前面带项目符号的词我也无法删除。

如有任何帮助,我们将不胜感激。

removePunctuation 使用 gsub('[[:punct:]]','',x) 即删除符号:!"#$%&'()*+, \-./:;<=>?@[\\]^_{|}~`。要删除其他符号,如印刷引号或项目符号(或任何其他符号),请声明您自己的转换函数:

removeSpecialChars <- function(x) gsub("“•”","",x)
docs <- tm_map(docs, removeSpecialChars)

或者您可以更进一步,删除所有非字母数字符号或 space:

removeSpecialChars <- function(x) gsub("[^a-zA-Z0-9 ]","",x)
docs <- tm_map(docs, removeSpecialChars)

一个更好的分词器会自动处理这个问题。试试这个:

> require(quanteda)
> text <- c("Enjoying \"my time\".", "Single 'air quotes'.")
> toktexts <- tokenize(toLower(text), removePunct = TRUE, removeNumbers = TRUE)
> toktexts
[[1]]
[1] "enjoying" "my"       "time"    

[[2]]
[1] "single" "air"    "quotes"

attr(,"class")
[1] "tokenizedTexts" "list"          
> dfm(toktexts, stem = TRUE, ignoredFeatures = stopwords("english"), verbose = FALSE)
Creating a dfm from a tokenizedTexts object ...
   ... indexing 2 documents
   ... shaping tokens into data.table, found 6 total tokens
   ... stemming the tokens (english)
   ... ignoring 174 feature types, discarding 1 total features (16.7%)
   ... summing tokens by document
   ... indexing 5 feature types
   ... building sparse matrix
   ... created a 2 x 5 sparse dfm
   ... complete. Elapsed time: 0.016 seconds.
Document-feature matrix of: 2 documents, 5 features.
2 x 5 sparse Matrix of class "dfmSparse"
       features
docs    air enjoy quot singl time
  text1   0     1    0     0    1
  text2   1     0    1     1    0

@cyberj0g 的回答需要对 tm (0.6) 的最新版本进行小的修改。 更新后的代码可以这样写:

removeSpecialChars <- function(x) gsub("[^a-zA-Z0-9 ]","",x)
corpus <- tm_map(corpus, content_transformer(removeSpecialChars))

感谢@cyberj0g 的工作代码