使用 ctypes 将 cupy 指针传递给 CUDA 内核
Passing a cupy pointer to a CUDA kernel using ctypes
我有一个 CUDA 内核 -
template <typename T, typename C>
__global__
void cuda_ListArray_num(
C *tonum,
const T *fromstarts,
const T *fromstops
) {
int64_t block_id = blockIdx.x + blockIdx.y * gridDim.x + gridDim.x * gridDim.y * blockIdx.z;
int64_t thread_id = block_id * blockDim.x + threadIdx.x;
int64_t start = fromstarts[thread_id];
int64_t stop = fromstops[thread_id];
tonum[thread_id] = (C) (stop - start);
}
ERROR
awkward_ListArray32_num_64(
int64_t* tonum,
const int32_t* fromstarts,
const int32_t* fromstops,
int64_t length) {
dim3 blocks_per_grid;
dim3 threads_per_block;
if (length > 1024) {
blocks_per_grid = dim3(ceil((length) / 1024.0), 1, 1);
threads_per_block = dim3(1024, 1, 1);
} else {
blocks_per_grid = dim3(1, 1, 1);
threads_per_block = dim3(length, 1, 1);
}
cuda_ListArray_num<int32_t, int64_t><<<blocks_per_grid, threads_per_block>>>(
tonum,
fromstarts,
fromstops);
cudaDeviceSynchronize();
return success();
}
我可以将其添加到 .so
文件并使用 ctypes
从 Python 加载它。之后,我尝试从 Python、
使用它
这是上面代码块中返回的 ERROR
结构的 Python 等价物 -
class Error(ctypes.Structure):
_fields_ = [
("str", ctypes.POINTER(ctypes.c_char)),
("identity", ctypes.c_int64),
("attempt", ctypes.c_int64),
("pass_through", ctypes.c_bool),
]
这是我尝试使用它的方式 Python -
lib = ctypes.CDLL("cuda-kernels.so")
funcC = getattr(lib, 'awkward_ListArray32_num_64')
funcC.restype = Error
tonum = cupy.array([123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123], dtype=cupy.in64)
tonumx = ctypes.cast(tonum.data.ptr, ctypes.POINTER(ctypes.c_int64))
fromstarts = cupy.array([2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1], dtype=cupy.int32)
fromstarts = ctypes.cast(fromstarts.data.ptr, ctypes.POINTER(ctypes.c_int32))
fromstops = cupy.array([3, 2, 4, 5, 3, 4, 2, 5, 3, 4, 6, 11], dtype=cupy.int32)
fromstops = ctypes.cast(fromstops.data.ptr, ctypes.POINTER(ctypes.c_int32))
length = 3
funcC.argtypes = (ctypes.POINTER(ctypes.c_int64), ctypes.POINTER(ctypes.c_int32), ctypes.POINTER(ctypes.c_int32), ctypes.c_int64)
ret_pass = funcC(tonumx, fromstarts, fromstops, length)
但是当我打印 tonum
-
>>> tonum[:3]
array([0, 0, 0])
但值应该是 - [1, 2, 2]
(基于 cuda_ListArray_num
的工作方式)
我做错了什么?我想我可能在将 cupy
指针传递给 cuda 内核时犯了一个错误。
您必须将 python 代码更改为
fromstarts = cupy.array([2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1], dtype=cupy.int32)
fromstarts_ctypes = ctypes.cast(fromstarts.data.ptr, ctypes.POINTER(ctypes.c_int32))
fromstops = cupy.array([4, 2, 4, 5, 3, 4, 2, 5, 3, 4, 6, 11], dtype=cupy.int32)
fromstops_ctypes = ctypes.cast(fromstops.data.ptr, ctypes.POINTER(ctypes.c_int32))
length = 3
funcC.argtypes = (ctypes.POINTER(ctypes.c_int64), ctypes.POINTER(ctypes.c_int32), ctypes.POINTER(ctypes.c_int32), ctypes.c_int64)
ret_pass = funcC(tonumx, fromstarts_ctypes, fromstops_ctypes, length)
原因是 CuPy 数组是使用 RAII 管理的,因此当您将 fromstarts
变量重新分配给另一个对象(ctypes 指针)时,实际数组会被销毁并且其内存块会返回给 CuPy 的内存池。此后,当您创建 fromstops
数组时,它将使用相同的内存块,覆盖 fromstarts
数组的内容,因为该数组不再存在,并共享相同的指针。
那么调用c代码的时候,fromstarts
和fromstops
其实是同一个指针。您可以使用调试器或仅使用 printf 来验证这一点。
我有一个 CUDA 内核 -
template <typename T, typename C>
__global__
void cuda_ListArray_num(
C *tonum,
const T *fromstarts,
const T *fromstops
) {
int64_t block_id = blockIdx.x + blockIdx.y * gridDim.x + gridDim.x * gridDim.y * blockIdx.z;
int64_t thread_id = block_id * blockDim.x + threadIdx.x;
int64_t start = fromstarts[thread_id];
int64_t stop = fromstops[thread_id];
tonum[thread_id] = (C) (stop - start);
}
ERROR
awkward_ListArray32_num_64(
int64_t* tonum,
const int32_t* fromstarts,
const int32_t* fromstops,
int64_t length) {
dim3 blocks_per_grid;
dim3 threads_per_block;
if (length > 1024) {
blocks_per_grid = dim3(ceil((length) / 1024.0), 1, 1);
threads_per_block = dim3(1024, 1, 1);
} else {
blocks_per_grid = dim3(1, 1, 1);
threads_per_block = dim3(length, 1, 1);
}
cuda_ListArray_num<int32_t, int64_t><<<blocks_per_grid, threads_per_block>>>(
tonum,
fromstarts,
fromstops);
cudaDeviceSynchronize();
return success();
}
我可以将其添加到 .so
文件并使用 ctypes
从 Python 加载它。之后,我尝试从 Python、
这是上面代码块中返回的 ERROR
结构的 Python 等价物 -
class Error(ctypes.Structure):
_fields_ = [
("str", ctypes.POINTER(ctypes.c_char)),
("identity", ctypes.c_int64),
("attempt", ctypes.c_int64),
("pass_through", ctypes.c_bool),
]
这是我尝试使用它的方式 Python -
lib = ctypes.CDLL("cuda-kernels.so")
funcC = getattr(lib, 'awkward_ListArray32_num_64')
funcC.restype = Error
tonum = cupy.array([123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123, 123], dtype=cupy.in64)
tonumx = ctypes.cast(tonum.data.ptr, ctypes.POINTER(ctypes.c_int64))
fromstarts = cupy.array([2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1], dtype=cupy.int32)
fromstarts = ctypes.cast(fromstarts.data.ptr, ctypes.POINTER(ctypes.c_int32))
fromstops = cupy.array([3, 2, 4, 5, 3, 4, 2, 5, 3, 4, 6, 11], dtype=cupy.int32)
fromstops = ctypes.cast(fromstops.data.ptr, ctypes.POINTER(ctypes.c_int32))
length = 3
funcC.argtypes = (ctypes.POINTER(ctypes.c_int64), ctypes.POINTER(ctypes.c_int32), ctypes.POINTER(ctypes.c_int32), ctypes.c_int64)
ret_pass = funcC(tonumx, fromstarts, fromstops, length)
但是当我打印 tonum
-
>>> tonum[:3]
array([0, 0, 0])
但值应该是 - [1, 2, 2]
(基于 cuda_ListArray_num
的工作方式)
我做错了什么?我想我可能在将 cupy
指针传递给 cuda 内核时犯了一个错误。
您必须将 python 代码更改为
fromstarts = cupy.array([2, 0, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1], dtype=cupy.int32)
fromstarts_ctypes = ctypes.cast(fromstarts.data.ptr, ctypes.POINTER(ctypes.c_int32))
fromstops = cupy.array([4, 2, 4, 5, 3, 4, 2, 5, 3, 4, 6, 11], dtype=cupy.int32)
fromstops_ctypes = ctypes.cast(fromstops.data.ptr, ctypes.POINTER(ctypes.c_int32))
length = 3
funcC.argtypes = (ctypes.POINTER(ctypes.c_int64), ctypes.POINTER(ctypes.c_int32), ctypes.POINTER(ctypes.c_int32), ctypes.c_int64)
ret_pass = funcC(tonumx, fromstarts_ctypes, fromstops_ctypes, length)
原因是 CuPy 数组是使用 RAII 管理的,因此当您将 fromstarts
变量重新分配给另一个对象(ctypes 指针)时,实际数组会被销毁并且其内存块会返回给 CuPy 的内存池。此后,当您创建 fromstops
数组时,它将使用相同的内存块,覆盖 fromstarts
数组的内容,因为该数组不再存在,并共享相同的指针。
那么调用c代码的时候,fromstarts
和fromstops
其实是同一个指针。您可以使用调试器或仅使用 printf 来验证这一点。