是否有 R 函数可以通过在缺少某些年份时按国家/地区分组来帮助将变量滞后一年?
Is there an R function that can help lag a variable by one year by grouping in country when some years are missing?
我在论坛中进行了搜索,但没有找到我问题的确切答案。我有一个来自世界银行的数据集
library(wbstats)
Gini <- wb(indicator = c("SI.POV.GINI"),
startdate = 2005, enddate = 2020)
Gini <- Gini[,c("iso3c", "date", "value")]
names(Gini)
names(Gini)<-c("iso3c", "date", "Gini")
#Change date to numeric
class(Gini$date)
Gini$date<-as.numeric(Gini$date)
#Tibble:
# A tibble: 1,012 x 3
iso3c date Gini
<chr> <dbl> <dbl>
1 ALB 2017 33.2
2 ALB 2016 33.7
3 ALB 2015 32.9
4 ALB 2014 34.6
5 ALB 2012 29
6 ALB 2008 30
7 ALB 2005 30.6
8 DZA 2011 27.6
9 AGO 2018 51.3
10 AGO 2008 42.7
# … with 1,002 more rows
那我试着把这个估计滞后一年
#Lag Gini
lg <- function(x)c(NA, x[1:(length(x)-1)])
Lagged.Gini<-ddply(Gini, ~ iso3c, transform, Gini.lag.1 = lg(Gini))
tibble(Lagged.Gini)
# A tibble: 1,032 x 4
iso3c date Gini Gini.lag.1
<chr> <dbl> <dbl> <dbl>
1 AGO 2018 51.3 NA
2 AGO 2008 42.7 51.3
3 ALB 2017 33.2 NA
4 ALB 2016 33.7 33.2
5 ALB 2015 32.9 33.7
6 ALB 2014 34.6 32.9
7 ALB 2012 29 34.6
8 ALB 2008 30 29
9 ALB 2005 30.6 30
10 ARE 2014 32.5 NA
不幸的是,我的问题是,当缺少年份时,滞后无法识别缺少的年份,只会将最近的年份作为滞后。例如:国家“ALB”的基尼系数估计在 2012 年没有滞后一年,而是滞后到下一年,即 2008 年。
我希望最终数据看起来一样,但我在下面进行了编辑——理想情况下能够滞后多年:
# A tibble: 1,032 x 4
iso3c date Gini Gini.lag.1
<chr> <dbl> <dbl> <dbl>
1 AGO 2018 51.3 NA
AGO 2017 NA 51.3
2 AGO 2008 42.7 NA
AGO 2007 NA 42.7
3 ALB 2017 33.2 NA
4 ALB 2016 33.7 33.2
5 ALB 2015 32.9 33.7
6 ALB 2014 34.6 32.9
ALB 2013 NA 29
7 ALB 2012 29 NA
8 ALB 2008 30 29
9 ALB 2005 30.6 30
10 ARE 2014 32.5 NA
您可以创建原件的副本 table,但日期要减去一年。然后只需在 iso3c
和 date
列上将两者连接在一起即可获得所需的最终结果。
像这样
Gini_lagged <- data.frame(
iso3c = Gini$iso3c,
date = Gini$date-1,
Gini.lag.1 = Gini$Gini)
merge(Gini,Gini_lagged,all=TRUE)
使用 dplyr 和 tidyr 形成 tidyverse,您可以按行进行变异以查找与当前行中的年份减 1 相匹配的年份。
library(tidyverse)
Gini %>%
rowwise() %>%
mutate(Gini.lag.1 = list(Gini$Gini[date-1 == Gini$date])) %>%
unnest(c(Gini.lag.1), keep_empty = T)
pseudospin 的答案非常适合 base R。由于您使用的是 tibbles,这里有一个具有相同效果的 tidyverse 版本:
Gini <- readr::read_table("
iso3c date Gini
ALB 2017 33.2
ALB 2016 33.7
ALB 2015 32.9
ALB 2014 34.6
ALB 2012 29
ALB 2008 30
ALB 2005 30.6
DZA 2011 27.6
AGO 2018 51.3
AGO 2008 42.7")
library(dplyr)
Gini %>%
transmute(iso3c, date = date - 1, Gini.lag.1 = Gini) %>%
full_join(Gini, ., by = c("iso3c", "date")) %>%
arrange(iso3c, desc(date))
# # A tibble: 17 x 4
# iso3c date Gini Gini.lag.1
# <chr> <dbl> <dbl> <dbl>
# 1 AGO 2018 51.3 NA
# 2 AGO 2017 NA 51.3
# 3 AGO 2008 42.7 NA
# 4 AGO 2007 NA 42.7
# 5 ALB 2017 33.2 NA
# 6 ALB 2016 33.7 33.2
# 7 ALB 2015 32.9 33.7
# 8 ALB 2014 34.6 32.9
# 9 ALB 2013 NA 34.6
# 10 ALB 2012 29 NA
# 11 ALB 2011 NA 29
# 12 ALB 2008 30 NA
# 13 ALB 2007 NA 30
# 14 ALB 2005 30.6 NA
# 15 ALB 2004 NA 30.6
# 16 DZA 2011 27.6 NA
# 17 DZA 2010 NA 27.6
如果您需要这样做 n
次(每次延迟一次),您可以通过编程方式将其扩展为:
Ginilags <- lapply(1:3, function(lg) {
z <- transmute(Gini, iso3c, date = date - lg, Gini)
names(z)[3] <- paste0("Gini.lag.", lg)
z
})
Reduce(function(a,b) full_join(a, b, by = c("iso3c", "date")),
c(list(Gini), Ginilags)) %>%
arrange(iso3c, desc(date))
# # A tibble: 28 x 6
# iso3c date Gini Gini.lag.1 Gini.lag.2 Gini.lag.3
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 AGO 2018 51.3 NA NA NA
# 2 AGO 2017 NA 51.3 NA NA
# 3 AGO 2016 NA NA 51.3 NA
# 4 AGO 2015 NA NA NA 51.3
# 5 AGO 2008 42.7 NA NA NA
# 6 AGO 2007 NA 42.7 NA NA
# 7 AGO 2006 NA NA 42.7 NA
# 8 AGO 2005 NA NA NA 42.7
# 9 ALB 2017 33.2 NA NA NA
# 10 ALB 2016 33.7 33.2 NA NA
# # ... with 18 more rows
我在论坛中进行了搜索,但没有找到我问题的确切答案。我有一个来自世界银行的数据集
library(wbstats)
Gini <- wb(indicator = c("SI.POV.GINI"),
startdate = 2005, enddate = 2020)
Gini <- Gini[,c("iso3c", "date", "value")]
names(Gini)
names(Gini)<-c("iso3c", "date", "Gini")
#Change date to numeric
class(Gini$date)
Gini$date<-as.numeric(Gini$date)
#Tibble:
# A tibble: 1,012 x 3
iso3c date Gini
<chr> <dbl> <dbl>
1 ALB 2017 33.2
2 ALB 2016 33.7
3 ALB 2015 32.9
4 ALB 2014 34.6
5 ALB 2012 29
6 ALB 2008 30
7 ALB 2005 30.6
8 DZA 2011 27.6
9 AGO 2018 51.3
10 AGO 2008 42.7
# … with 1,002 more rows
那我试着把这个估计滞后一年
#Lag Gini
lg <- function(x)c(NA, x[1:(length(x)-1)])
Lagged.Gini<-ddply(Gini, ~ iso3c, transform, Gini.lag.1 = lg(Gini))
tibble(Lagged.Gini)
# A tibble: 1,032 x 4
iso3c date Gini Gini.lag.1
<chr> <dbl> <dbl> <dbl>
1 AGO 2018 51.3 NA
2 AGO 2008 42.7 51.3
3 ALB 2017 33.2 NA
4 ALB 2016 33.7 33.2
5 ALB 2015 32.9 33.7
6 ALB 2014 34.6 32.9
7 ALB 2012 29 34.6
8 ALB 2008 30 29
9 ALB 2005 30.6 30
10 ARE 2014 32.5 NA
不幸的是,我的问题是,当缺少年份时,滞后无法识别缺少的年份,只会将最近的年份作为滞后。例如:国家“ALB”的基尼系数估计在 2012 年没有滞后一年,而是滞后到下一年,即 2008 年。
我希望最终数据看起来一样,但我在下面进行了编辑——理想情况下能够滞后多年:
# A tibble: 1,032 x 4
iso3c date Gini Gini.lag.1
<chr> <dbl> <dbl> <dbl>
1 AGO 2018 51.3 NA
AGO 2017 NA 51.3
2 AGO 2008 42.7 NA
AGO 2007 NA 42.7
3 ALB 2017 33.2 NA
4 ALB 2016 33.7 33.2
5 ALB 2015 32.9 33.7
6 ALB 2014 34.6 32.9
ALB 2013 NA 29
7 ALB 2012 29 NA
8 ALB 2008 30 29
9 ALB 2005 30.6 30
10 ARE 2014 32.5 NA
您可以创建原件的副本 table,但日期要减去一年。然后只需在 iso3c
和 date
列上将两者连接在一起即可获得所需的最终结果。
像这样
Gini_lagged <- data.frame(
iso3c = Gini$iso3c,
date = Gini$date-1,
Gini.lag.1 = Gini$Gini)
merge(Gini,Gini_lagged,all=TRUE)
使用 dplyr 和 tidyr 形成 tidyverse,您可以按行进行变异以查找与当前行中的年份减 1 相匹配的年份。
library(tidyverse)
Gini %>%
rowwise() %>%
mutate(Gini.lag.1 = list(Gini$Gini[date-1 == Gini$date])) %>%
unnest(c(Gini.lag.1), keep_empty = T)
pseudospin 的答案非常适合 base R。由于您使用的是 tibbles,这里有一个具有相同效果的 tidyverse 版本:
Gini <- readr::read_table("
iso3c date Gini
ALB 2017 33.2
ALB 2016 33.7
ALB 2015 32.9
ALB 2014 34.6
ALB 2012 29
ALB 2008 30
ALB 2005 30.6
DZA 2011 27.6
AGO 2018 51.3
AGO 2008 42.7")
library(dplyr)
Gini %>%
transmute(iso3c, date = date - 1, Gini.lag.1 = Gini) %>%
full_join(Gini, ., by = c("iso3c", "date")) %>%
arrange(iso3c, desc(date))
# # A tibble: 17 x 4
# iso3c date Gini Gini.lag.1
# <chr> <dbl> <dbl> <dbl>
# 1 AGO 2018 51.3 NA
# 2 AGO 2017 NA 51.3
# 3 AGO 2008 42.7 NA
# 4 AGO 2007 NA 42.7
# 5 ALB 2017 33.2 NA
# 6 ALB 2016 33.7 33.2
# 7 ALB 2015 32.9 33.7
# 8 ALB 2014 34.6 32.9
# 9 ALB 2013 NA 34.6
# 10 ALB 2012 29 NA
# 11 ALB 2011 NA 29
# 12 ALB 2008 30 NA
# 13 ALB 2007 NA 30
# 14 ALB 2005 30.6 NA
# 15 ALB 2004 NA 30.6
# 16 DZA 2011 27.6 NA
# 17 DZA 2010 NA 27.6
如果您需要这样做 n
次(每次延迟一次),您可以通过编程方式将其扩展为:
Ginilags <- lapply(1:3, function(lg) {
z <- transmute(Gini, iso3c, date = date - lg, Gini)
names(z)[3] <- paste0("Gini.lag.", lg)
z
})
Reduce(function(a,b) full_join(a, b, by = c("iso3c", "date")),
c(list(Gini), Ginilags)) %>%
arrange(iso3c, desc(date))
# # A tibble: 28 x 6
# iso3c date Gini Gini.lag.1 Gini.lag.2 Gini.lag.3
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 AGO 2018 51.3 NA NA NA
# 2 AGO 2017 NA 51.3 NA NA
# 3 AGO 2016 NA NA 51.3 NA
# 4 AGO 2015 NA NA NA 51.3
# 5 AGO 2008 42.7 NA NA NA
# 6 AGO 2007 NA 42.7 NA NA
# 7 AGO 2006 NA NA 42.7 NA
# 8 AGO 2005 NA NA NA 42.7
# 9 ALB 2017 33.2 NA NA NA
# 10 ALB 2016 33.7 33.2 NA NA
# # ... with 18 more rows