OR-Tools VRP 求解器表现不佳

OR-Tools VRP Solver Under-performing

我正在尝试测试 or-tools 路由求解器来解决基本的 TSP 问题,但我无法使其正常工作。在问题被发送到路由求解器之前,我有一个距离矩阵和一堆贪婪的解决方案。例如,我使用底部共享的 this website 中的示例 python 代码设置了一个问题。

在示例中,我有 10 个具有非对称距离矩阵的城市。最佳贪心解(从不同城市开始的最近优先)作为初始解存储在 data 中。我有两个函数:solve_from_initial_route()solve_from_scratch() 可以在有或没有初始解决方案信息的情况下解决相同的问题,并产生相同的结果。求解器在这里表现出一些令人惊讶的行为:

可能是我没有正确设置所有选项,或者我的代码中遗漏了某些内容。如果能帮助求解器按预期工作,我将不胜感激。

谢谢!

!pip install ortools
from __future__ import print_function
from ortools.constraint_solver import pywrapcp
from ortools.constraint_solver import routing_enums_pb2

def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data['distance_matrix'] = [
        [0, 227543, 133934, 200896, 106495, 163222, 75896, 139494, 46460, 102942],
        [135873, 0, 15673, 174874, 80474, 197318, 109993, 232377, 139343, 46665],
        [229482, 15673, 0, 88692, 183092, 125214, 214714, 153718, 247723, 140274],
        [108503, 174151, 80542, 0, 15674, 169948, 82622, 205007, 111973, 49550],
        [195308, 94193, 167348, 21174, 0, 105716, 169428, 134221, 198779, 136356],
        [77835, 203602, 109992, 176954, 82554, 0, 15660, 174340, 81306, 79000],
        [172835, 119784, 213500, 94785, 189185, 21172, 0, 96019, 190024, 174000],
        [48413, 232967, 139358, 206320, 111919, 168647, 81321, 0, 15662, 108366],
        [141422, 153773, 247490, 128774, 204928, 101504, 174329, 15662, 0, 201374],
        [104492, 139205, 45595, 143494, 49093, 165938, 78612, 200997, 107963, 0]
    ]
    data['initial_routes'] = [
        [8, 7, 6, 5, 4, 3, 2, 1]
    ]
    data['num_vehicles'] = 1
    data['start_idx'] = [0]
    data['end_idx'] = [9]
    return data
def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    max_route_distance = 0
    for vehicle_id in range(data['num_vehicles']):
        index = routing.Start(vehicle_id)
        plan_output = 'Route for vehicle {}:\n'.format(vehicle_id)
        route_distance = 0
        while not routing.IsEnd(index):
            plan_output += ' {} -> '.format(manager.IndexToNode(index))
            previous_index = index
            index = solution.Value(routing.NextVar(index))
            route_distance += routing.GetArcCostForVehicle(
                previous_index, index, vehicle_id)
        plan_output += '{}\n'.format(manager.IndexToNode(index))
        plan_output += 'Distance of the route: {}m\n'.format(route_distance)
        print(plan_output)
        max_route_distance = max(route_distance, max_route_distance)
    print('Maximum of the route distances: {}m'.format(max_route_distance))
def solve_from_initial_route():
    """Solve the CVRP problem."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']),
                                           data['num_vehicles'], data['start_idx'],
                                           data['end_idx'])

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)


    # Create and register a transit callback.
    def distance_callback(from_index, to_index):
        """Returns the distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data['distance_matrix'][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    initial_solution = routing.ReadAssignmentFromRoutes(data['initial_routes'],True)
    print('Initial solution:')
    print_solution(data, manager, routing, initial_solution)

    # Set default search parameters.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
    search_parameters.local_search_metaheuristic = (routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
    search_parameters.time_limit.seconds = 2
    search_parameters.lns_time_limit.seconds = 1
    search_parameters.solution_limit = 15000
    search_parameters.log_search = True

    # Solve the problem.
    solution = routing.SolveFromAssignmentWithParameters(initial_solution, search_parameters)

    # Print solution on console.
    if solution:
        print('Solution after search:')
        print_solution(data, manager, routing, solution)
def solve_from_scratch():
    """Solve the CVRP problem."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager
    manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']),
                                           data['num_vehicles'], data['start_idx'],
                                           data['end_idx'])

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)

    # Create and register a transit callback.
    def distance_callback(from_index, to_index):
        """Returns the distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data['distance_matrix'][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Set default search parameters.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
    search_parameters.local_search_metaheuristic = (routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
    search_parameters.time_limit.seconds = 2
    search_parameters.lns_time_limit.seconds = 1
    search_parameters.solution_limit = 150000
    search_parameters.log_search = True

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print('Solution after search:')
        print_solution(data, manager, routing, solution)
if __name__ == '__main__':
    #solve_from_initial_route()
    solve_from_scratch()

如果我运行你的代码,它会打印

Solution after search:
Route for vehicle 0:
 0 ->  8 ->  7 ->  6 ->  5 ->  4 ->  3 ->  2 ->  1 -> 9
Distance of the route: 411223m

这是使用所有节点从 0 到 9 的最佳路径(我使用 tsp_sat 代码检查过)。而且不到1毫秒就被发现了

现在,在日志部分,

Solution #5265 (783010, objective minimum = 411223, objective maximum = 1103173, time = 1998 ms, branches = 26227, failures = 14386, depth = 33, OrOpt<3>, neighbors = 351904, filtered neighbors = 5265, accepted neighbors = 5265, memory used = 35.63 MB, limit = 99%)

GLS对成本函数进行了惩罚,所以实际值783010不是真正的距离,而是惩罚后的距离

现在,solve_from_initial_route() 命中 known bug

这里是正确的求解代码

# Create the routing index manager.
manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']),
                                       data['num_vehicles'], 
                                       data['start_idx'],
                                       data['end_idx'])

# Create Routing Model.
routing = pywrapcp.RoutingModel(manager)


# Create and register a transit callback.
def distance_callback(from_index, to_index):
    """Returns the distance between the two nodes."""
    # Convert from routing variable Index to distance matrix NodeIndex.
    from_node = manager.IndexToNode(from_index)
    to_node = manager.IndexToNode(to_index)
    return data['distance_matrix'][from_node][to_node]

transit_callback_index = routing.RegisterTransitCallback(distance_callback)

# Define cost of each arc.
routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

# Set default search parameters.
search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.first_solution_strategy = (routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
search_parameters.local_search_metaheuristic = (routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
search_parameters.time_limit.seconds = 1
search_parameters.lns_time_limit.seconds = 1
search_parameters.solution_limit = 15000
search_parameters.log_search = True

routing.CloseModelWithParameters(search_parameters)

initial_solution = routing.ReadAssignmentFromRoutes(data['initial_routes'],
                                                    True)
print('Initial solution:')
print_solution(data, manager, routing, initial_solution)


# Solve the problem.
solution =  routing.SolveFromAssignmentWithParameters(initial_solution, search_parameters)

这样就正确初始化了参数,搜索找到了最优解。