R 中 revoScaleR::rxGlm() 的方差分析问题

ANOVA problems with revoScaleR::rxGlm() in R

我构建了很多 GLM。通常在具有许多模型参数的大型数据集上。这意味着基础 R 的 glm() 函数并不是很有用,因为它无法处理 size/complexity,所以我通常使用 revoScaleR::rxGlm() 代替。

但是我希望能够对嵌套模型对进行方差分析测试,但我还没有找到对 rxGlm() 创建的模型对象执行此操作的方法,因为 R 的 anova() 功能不适用于它们。 revoScaleR 提供了一个 as.glm() 函数,可以将 rxGlm() 对象转换为 glm() 对象 - 有点 - 但它在这里不起作用。

例如:

library(dplyr)

data(mtcars)

# don't like having named rows

mtcars <- mtcars %>% 
  mutate(veh_name = rownames(.)) %>%
  select(veh_name, everything())

# fit a GLM: mpg ~ everything else

glm_a1 <- glm(mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb,
             data = mtcars,
             family = gaussian(link = "identity"),
             trace = TRUE)

summary(glm_a1)

# fit another GLM where gear is removed

glm_a2 <- glm(mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + carb,
             data = mtcars,
             family = gaussian(link = "identity"),
             trace = TRUE)

summary(glm_a2)

# F test on difference

anova(glm_a1, glm_a2, test = "F")

工作正常,但如果我这样做:

library(dplyr)

data(mtcars)

# don't like having named rows

mtcars <- mtcars %>% 
  mutate(veh_name = rownames(.)) %>%
  select(veh_name, everything())

glm_b1 <- rxGlm(mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + gear + carb,
               data = mtcars,
               family = gaussian(link = "identity"),
               verbose = 1)

summary(glm_b1)

# fit another GLM where gear is removed

glm_b2 <- rxGlm(mpg ~ cyl + disp + hp + drat + wt + qsec + vs + am + carb,
               data = mtcars,
               family = gaussian(link = "identity"),
               verbose = 1)

summary(glm_b2)

# F test on difference

anova(as.glm(glm_b1), as.glm(glm_b2), test = "F")

我看到错误信息:

Error in qr.lm(object) : lm object does not have a proper 'qr'
component. Rank zero or should not have used lm(.., qr=FALSE)

同样的问题出现在之前的 SO 帖子中: 但似乎没有解决。

有人可以帮忙吗?如果 as.glm() 在这里无济于事,还有其他方法吗?我可以编写一个自定义函数来执行此操作吗(我怀疑我的编码能力已达到极限!)?

此外,SO 是最好的论坛吗,或者其他 StackExchange 论坛之一是否是寻求指导的更好地方?

谢谢。

部分解决方案...

my_anova <- function (model_1, model_2, test_type)
{
  
  # only applies for nested GLMs. How do I test for this?
  
  cat("\n")
  
  if(test_type != "F")
  {
    cat("Invalid function call")
  }
  else
  {
    # display model formulae
    
    cat("Model 1:", format(glm_b1$formula), "\n")
    cat("Model 2:", format(glm_b2$formula), "\n")
    
    if(test_type == "F") 
    {
      
      if (model_1$df[2] < model_2$df[2]) # model 1 is big, model 2 is small
        
      {
        dev_s <- model_2$deviance
        df_s  <- model_2$df[2]
        dev_b <- model_1$deviance
        df_b  <- model_1$df[2]
      }
      else # model 2 is big, model 1 is small
      {
        dev_s <- model_1$deviance
        df_s  <- model_1$df[2]
        dev_b <- model_2$deviance
        df_b  <- model_2$df[2]
      }
      
      F <- (dev_s - dev_b) / ((df_s - df_b) * dev_b / df_b)
      
    }
    
    # still need to calculate the F tail probability however
    
    # df of F: numerator: df_s - df_b
    # df of F: denominator: df_b
    
    F_test <- pf(F, df_s - df_b, df_b, lower.tail = FALSE)
    
    cat("\n")
    cat("F:     ", round(F, 4), "\n")
    cat("Pr(>F):", round(F_test, 4))
  }
}