总结一下——它是否依赖于顺序?
summarize across -- is it order dependent?
我在 dplyr
和 across
中遇到了一些奇怪的事情,或者至少是我不明白的事情。
如果我们使用 across 函数跨多个列计算 mean
和 standard error of the mean
,我很想使用以下命令:
mtcars %>% group_by(gear) %>% select(mpg,cyl) %>%
summarize(across(everything(), ~mean(.x, na.rm = TRUE), .names = "{col}"),
across(everything(), ~sd(.x, na.rm=T)/sqrt(sum(!is.na(.x))), .names="se_{col}")) %>% head()
结果是
gear mpg cyl se_mpg se_cyl
<dbl> <dbl> <dbl> <dbl> <dbl>
1 3 16.1 7.47 NA NA
2 4 24.5 4.67 NA NA
3 5 21.4 6 NA NA
但是,如果我切换各个 across
命令的顺序,我会得到以下结果:
mtcars %>% group_by(gear) %>% select(mpg,cyl) %>%
summarize(across(everything(), ~sd(.x, na.rm=T)/sqrt(sum(!is.na(.x))), .names="se_{col}"),
across(everything(), ~mean(.x, na.rm = TRUE), .names = "{col}")) %>% head()
# A tibble: 3 x 5
gear se_mpg se_cyl mpg cyl
<dbl> <dbl> <dbl> <dbl> <dbl>
1 3 0.871 0.307 16.1 7.47
2 4 1.52 0.284 24.5 4.67
3 5 2.98 0.894 21.4 6
为什么会这样?跟我使用everything()
有关系吗?在我的情况下,我希望计算数据集中每个变量的 mean
和 standard error of the mean
。
我不知道为什么 summarize
会这样,这可能是由于两个 across
函数的潜在交互(尽管我觉得这很奇怪)。无论如何,我建议您编写一个 across
语句并使用 across
documentation.
建议的 lambda 函数列表
这样一来,不管第一个函数是均值还是标准差,你都不会得到 NA。
mtcars %>%
group_by(gear) %>%
select(mpg, cyl) %>%
summarize(across(everything(), list(
mean = ~mean(.x, na.rm = TRUE),
se = ~sd(.x, na.rm = TRUE)/sqrt(sum(!is.na(.x)))
), .names = "{fn}_{col}"))
# A tibble: 3 x 5
# gear mean_mpg se_mpg mean_cyl se_cyl
# <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 3 16.1 0.871 7.47 0.307
# 2 4 24.5 1.52 4.67 0.284
# 3 5 21.4 2.98 6 0.894
mtcars %>%
group_by(gear) %>%
select(mpg, cyl) %>%
summarize(across(everything(), list(
se = ~sd(.x, na.rm = TRUE)/sqrt(sum(!is.na(.x))),
mean = ~mean(.x, na.rm = TRUE)
), .names = "{fn}_{col}"))
# A tibble: 3 x 5
# gear se_mpg mean_mpg se_cyl mean_cyl
# <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 3 0.871 16.1 0.307 7.47
# 2 4 1.52 24.5 0.284 4.67
# 3 5 2.98 21.4 0.894 6
我在 dplyr
和 across
中遇到了一些奇怪的事情,或者至少是我不明白的事情。
如果我们使用 across 函数跨多个列计算 mean
和 standard error of the mean
,我很想使用以下命令:
mtcars %>% group_by(gear) %>% select(mpg,cyl) %>%
summarize(across(everything(), ~mean(.x, na.rm = TRUE), .names = "{col}"),
across(everything(), ~sd(.x, na.rm=T)/sqrt(sum(!is.na(.x))), .names="se_{col}")) %>% head()
结果是
gear mpg cyl se_mpg se_cyl
<dbl> <dbl> <dbl> <dbl> <dbl>
1 3 16.1 7.47 NA NA
2 4 24.5 4.67 NA NA
3 5 21.4 6 NA NA
但是,如果我切换各个 across
命令的顺序,我会得到以下结果:
mtcars %>% group_by(gear) %>% select(mpg,cyl) %>%
summarize(across(everything(), ~sd(.x, na.rm=T)/sqrt(sum(!is.na(.x))), .names="se_{col}"),
across(everything(), ~mean(.x, na.rm = TRUE), .names = "{col}")) %>% head()
# A tibble: 3 x 5
gear se_mpg se_cyl mpg cyl
<dbl> <dbl> <dbl> <dbl> <dbl>
1 3 0.871 0.307 16.1 7.47
2 4 1.52 0.284 24.5 4.67
3 5 2.98 0.894 21.4 6
为什么会这样?跟我使用everything()
有关系吗?在我的情况下,我希望计算数据集中每个变量的 mean
和 standard error of the mean
。
我不知道为什么 summarize
会这样,这可能是由于两个 across
函数的潜在交互(尽管我觉得这很奇怪)。无论如何,我建议您编写一个 across
语句并使用 across
documentation.
这样一来,不管第一个函数是均值还是标准差,你都不会得到 NA。
mtcars %>%
group_by(gear) %>%
select(mpg, cyl) %>%
summarize(across(everything(), list(
mean = ~mean(.x, na.rm = TRUE),
se = ~sd(.x, na.rm = TRUE)/sqrt(sum(!is.na(.x)))
), .names = "{fn}_{col}"))
# A tibble: 3 x 5
# gear mean_mpg se_mpg mean_cyl se_cyl
# <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 3 16.1 0.871 7.47 0.307
# 2 4 24.5 1.52 4.67 0.284
# 3 5 21.4 2.98 6 0.894
mtcars %>%
group_by(gear) %>%
select(mpg, cyl) %>%
summarize(across(everything(), list(
se = ~sd(.x, na.rm = TRUE)/sqrt(sum(!is.na(.x))),
mean = ~mean(.x, na.rm = TRUE)
), .names = "{fn}_{col}"))
# A tibble: 3 x 5
# gear se_mpg mean_mpg se_cyl mean_cyl
# <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 3 0.871 16.1 0.307 7.47
# 2 4 1.52 24.5 0.284 4.67
# 3 5 2.98 21.4 0.894 6