如何将此代码重写为 apply-lambda 表达式?

How to rewrite this code into an apply-lambda expression?

我的数据框 (df) 在新列 's_score' 中有一些 NaN 条目,我可以使用 func(x) 将其排除。 即 document_path_similarity() 的执行会导致一些 NaN,从而阻止 most_similar_docs() 的执行(如果我不先使用 func(x))。 D1,D2 是 df.columns 字符串数据。

df
Quality D1                                  D2
0   1   Ms Stewart, the chief executive...  Ms Stewart, 61, its chief executive 
1   1   After more than two years' det...   After more than two years in 
def most_similar_docs():

    def func(x):
        try:
            return document_path_similarity(x['D1'], x['D2'])
        except:
            return np.nan
    df['s_score'] = df.apply(func, axis=1)

有没有办法将这段代码重写为一行代码?

我的以下尝试导致“ValueError: ('max() arg is an empty sequence' or SyntaxError.

df['s_scores'] = df.apply(lambda x: document_path_similarity(x.D1, x.D2),axis=1)
paraphrases['s_scores'] = paraphrases.apply(lambda x: document_path_similarity(x.D1, x.D2),axis=1 if np.isnan(x))

我认为您的 pandas 代码没有任何问题。我确实发现 similarity_score() 失败了,因为它试图获取一个空列表的最大值。我通过强制输入零分来强制列表为 non-empty。这是我第一次查看这个库,所以请不要认为我的补丁质量很好。

import io
df = pd.read_csv(io.StringIO("""  Quality  D1                                  D2
0   1   Ms Stewart, the chief executive...  Ms Stewart, 61, its chief executive 
1   1   After more than two years' det...   After more than two years in """), sep="\s\s+", engine="python")

def similarity_score(s1, s2):
    list1 = []
    for a in s1:
        # patch +[0] at end so never finding max of empty list
        list1.append(max([i.path_similarity(a) for i in s2 if i.path_similarity(a) is not None]+[0]))
    output = sum(list1)/len(list1)
    return output

df = df.assign(
    s_scores=lambda x: x.apply(lambda r: document_path_similarity(r.D1, r.D2), axis=1)
)

print(df.to_string(index=False))

输出

 Quality                                  D1                                   D2  s_scores
       1  Ms Stewart, the chief executive...  Ms Stewart, 61, its chief executive  0.838889
       1   After more than two years' det...         After more than two years in  0.912500