本征稀疏求解器错误结果
Eigen sparse solver wrong results
我正在尝试使用 C++ 中的 Eigen 库求解稀疏线性系统 Ax=B,但是以下简单示例似乎给出了错误的解决方案:
#include <Eigen/SparseCholesky>
#include <Eigen/Dense>
#include <Eigen/Sparse>
#include <iostream>
#include <vector>
using namespace std;
using namespace Eigen;
int main(){
SimplicialLDLT<SparseMatrix<double>> solver;
SparseMatrix<double> A(9,9);
typedef Triplet<double> T;
vector<T> triplet;
VectorXd B(9);
for(int i=0; i<4; i++){
triplet.push_back(T(i,i,1));
triplet.push_back(T(i+5,i+5,1));
}
triplet.push_back(T(4,1,-1));
triplet.push_back(T(4,3,-1));
triplet.push_back(T(4,5,-1));
triplet.push_back(T(4,7,-1));
triplet.push_back(T(4,4,4));
A.setFromTriplets(triplet.begin(),triplet.end());
B << 0,0,0,0,0.387049,0,0,0,0;
solver.compute(A);
VectorXd x = solver.solve(B);
cout << "A\n" << A << "\n";
cout << "B\n" << B << "\n";
cout << "x\n" << x << "\n";
return 0;
}
我没有看到任何错误,算法 returns“0”表示“成功”,但是我得到的解决方案是
x = 0 0.193524 0 0.193524 0.193524 0 0 0 0
这显然不是这个系统的解决方案,正确的是
x = 0 0 0 0 0.0967621 0 0 0 0
Here's documentation 对于 SimplicialLDLT
求解器:
This class provides a LDL^T Cholesky factorizations without square root of sparse matrices that are selfadjoint and positive definite.
当矩阵中元素存储实数时,self-adjoint == 对称。您的矩阵显然不对称。此外,并非每个对称矩阵都是 positive-definite、see examples.
简而言之,您选择的求解器仅适用于非常窄的 class 矩阵。正如您已经发现的那样,SparseLU
求解器适用于您的输入数据。
ConjugateGradient
求解器也不起作用,它不要求矩阵是 positive-definite 但 it does 要求它是 self-adjoint.
我正在尝试使用 C++ 中的 Eigen 库求解稀疏线性系统 Ax=B,但是以下简单示例似乎给出了错误的解决方案:
#include <Eigen/SparseCholesky>
#include <Eigen/Dense>
#include <Eigen/Sparse>
#include <iostream>
#include <vector>
using namespace std;
using namespace Eigen;
int main(){
SimplicialLDLT<SparseMatrix<double>> solver;
SparseMatrix<double> A(9,9);
typedef Triplet<double> T;
vector<T> triplet;
VectorXd B(9);
for(int i=0; i<4; i++){
triplet.push_back(T(i,i,1));
triplet.push_back(T(i+5,i+5,1));
}
triplet.push_back(T(4,1,-1));
triplet.push_back(T(4,3,-1));
triplet.push_back(T(4,5,-1));
triplet.push_back(T(4,7,-1));
triplet.push_back(T(4,4,4));
A.setFromTriplets(triplet.begin(),triplet.end());
B << 0,0,0,0,0.387049,0,0,0,0;
solver.compute(A);
VectorXd x = solver.solve(B);
cout << "A\n" << A << "\n";
cout << "B\n" << B << "\n";
cout << "x\n" << x << "\n";
return 0;
}
我没有看到任何错误,算法 returns“0”表示“成功”,但是我得到的解决方案是
x = 0 0.193524 0 0.193524 0.193524 0 0 0 0
这显然不是这个系统的解决方案,正确的是
x = 0 0 0 0 0.0967621 0 0 0 0
Here's documentation 对于 SimplicialLDLT
求解器:
This class provides a LDL^T Cholesky factorizations without square root of sparse matrices that are selfadjoint and positive definite.
当矩阵中元素存储实数时,self-adjoint == 对称。您的矩阵显然不对称。此外,并非每个对称矩阵都是 positive-definite、see examples.
简而言之,您选择的求解器仅适用于非常窄的 class 矩阵。正如您已经发现的那样,SparseLU
求解器适用于您的输入数据。
ConjugateGradient
求解器也不起作用,它不要求矩阵是 positive-definite 但 it does 要求它是 self-adjoint.