从字典中提取值并有条件地将它们分配给 pandas 中的列
Extract values from dictionary and conditionally assign them to columns in pandas
我正在尝试从 pandas 中的一列字典中提取值,并将它们分配给各自已经存在的列。我在下面硬编码了我拥有的数据集的示例:
df_have = pd.DataFrame(
{
'value_column':[np.nan, np.nan, np.nan]
,'date':[np.nan, np.nan, np.nan]
,'string_column':[np.nan, np.nan, np.nan]
, 'dict':[[{'value_column':40},{'date':'2017-08-01'}],[{'value_column':30},
{'string_column':'abc'}],[{'value_column':10},{'date':'2016-12-01'}]]
})
df_have
df_want = pd.DataFrame(
{
'value_column':[40, 30, 10]
,'date':['2017-08-01', np.nan, '2016-12-01']
,'string_column':[np.nan, 'abc', np.nan]
,'dict':[[{'value_column':40},{'date':'2017-08-01'}],[{'value_column':30},
{'string_column':'abc'}],[{'value_column':10},{'date':'2016-12-01'}]]})
df_want
我已经设法使用循环从字典中提取值:
'''
for row in range(len(df_have)):
row_holder = df_have.dict[row]
number_of_dictionaries_in_the_row = len(row_holder)
for dictionary in range(number_of_dictionaries_in_the_row):
variable_holder = df_have.dict[row][dictionary].keys()
variable = list(variable_holder)[0]
value = df_have.dict[row][dictionary].get(variable)
'''
我现在需要以某种方式有条件地将 df_have 变成 df_want。我很高兴采用全新的方法并从头开始重新创建整个事物。我们甚至可以假设我只有一个包含字典的数据框,没有其他任何东西。
您可以使用 pandas 字符串方法来提取数据,尽管我认为在 Pandas 中嵌套数据结构效率低下:
df_have.loc[:, "value_column"] = df_have["dict"].str.get(0).str.get("value_column")
df_have.loc[:, "date"] = df_have["dict"].str.get(-1).str.get("date")
df_have.loc[:, "string_column"] = df_have["dict"].str.get(-1).str.get("string_column")
value_column date string_column dict
0 40 2017-08-01 None [{'value_column': 40}, {'date': '2017-08-01'}]
1 30 None abc [{'value_column': 30}, {'string_column': 'abc'}]
2 10 2016-12-01 None [{'value_column': 10}, {'date': '2016-12-01'}]
我正在尝试从 pandas 中的一列字典中提取值,并将它们分配给各自已经存在的列。我在下面硬编码了我拥有的数据集的示例:
df_have = pd.DataFrame(
{
'value_column':[np.nan, np.nan, np.nan]
,'date':[np.nan, np.nan, np.nan]
,'string_column':[np.nan, np.nan, np.nan]
, 'dict':[[{'value_column':40},{'date':'2017-08-01'}],[{'value_column':30},
{'string_column':'abc'}],[{'value_column':10},{'date':'2016-12-01'}]]
})
df_have
df_want = pd.DataFrame(
{
'value_column':[40, 30, 10]
,'date':['2017-08-01', np.nan, '2016-12-01']
,'string_column':[np.nan, 'abc', np.nan]
,'dict':[[{'value_column':40},{'date':'2017-08-01'}],[{'value_column':30},
{'string_column':'abc'}],[{'value_column':10},{'date':'2016-12-01'}]]})
df_want
我已经设法使用循环从字典中提取值:
'''
for row in range(len(df_have)):
row_holder = df_have.dict[row]
number_of_dictionaries_in_the_row = len(row_holder)
for dictionary in range(number_of_dictionaries_in_the_row):
variable_holder = df_have.dict[row][dictionary].keys()
variable = list(variable_holder)[0]
value = df_have.dict[row][dictionary].get(variable)
'''
我现在需要以某种方式有条件地将 df_have 变成 df_want。我很高兴采用全新的方法并从头开始重新创建整个事物。我们甚至可以假设我只有一个包含字典的数据框,没有其他任何东西。
您可以使用 pandas 字符串方法来提取数据,尽管我认为在 Pandas 中嵌套数据结构效率低下:
df_have.loc[:, "value_column"] = df_have["dict"].str.get(0).str.get("value_column")
df_have.loc[:, "date"] = df_have["dict"].str.get(-1).str.get("date")
df_have.loc[:, "string_column"] = df_have["dict"].str.get(-1).str.get("string_column")
value_column date string_column dict
0 40 2017-08-01 None [{'value_column': 40}, {'date': '2017-08-01'}]
1 30 None abc [{'value_column': 30}, {'string_column': 'abc'}]
2 10 2016-12-01 None [{'value_column': 10}, {'date': '2016-12-01'}]