多个组的可反应聚合函数
Reactable Aggregate Function for Multiple Groups
使用 R reactable
包,我尝试使用两个 groupBy 变量显示标记读数的百分比。在较低级别的分组中,这是计算正确的百分比。但是在第二层(外层)分组中,它没有显示正确的百分比。
这是数据:
dat <- structure(list(Date = structure(c(1592611200, 1592611200, 1592611200,
1592611200, 1592697600, 1592697600,
1592697600, 1592697600, 1592784000,
1592784000, 1592784000, 1592784000,
1592870400, 1592870400, 1592870400,
1592870400, 1592956800, 1592956800,
1592956800, 1592956800, 1593043200,
1593043200, 1593043200, 1593043200,
1593129600, 1593129600, 1593129600,
1593129600, 1593216000, 1593216000,
1593216000, 1593216000, 1593302400,
1593302400, 1593302400, 1593302400,
1593388800, 1593388800, 1593388800,
1593388800),
tzone = "UTC", class = c("POSIXct", "POSIXt")),
variable = c("Incoming Reading 1", "Outgoing Reading 1", "Incoming Reading 2", "Outgoing Reading 2", "Incoming Reading 1",
"Outgoing Reading 1", "Incoming Reading 2", "Outgoing Reading 2", "Incoming Reading 1", "Outgoing Reading 1",
"Incoming Reading 2", "Outgoing Reading 2", "Incoming Reading 1", "Outgoing Reading 1", "Incoming Reading 2",
"Outgoing Reading 2", "Incoming Reading 1", "Outgoing Reading 1", "Incoming Reading 2", "Outgoing Reading 2",
"Incoming Reading 1", "Outgoing Reading 1", "Incoming Reading 2", "Outgoing Reading 2", "Incoming Reading 1",
"Outgoing Reading 1", "Incoming Reading 2", "Outgoing Reading 2", "Incoming Reading 1", "Outgoing Reading 1",
"Incoming Reading 2", "Outgoing Reading 2", "Incoming Reading 1", "Outgoing Reading 1", "Incoming Reading 2",
"Outgoing Reading 2", "Incoming Reading 1", "Outgoing Reading 1", "Incoming Reading 2", "Outgoing Reading 2"),
reading = c(60, 55, 60, 72,
61, 56, 60, 71,
62, 55, 61, 72,
61, 54, 60, 71,
62, 53, 60, 72,
61, 52, 59, 71,
60, 51, 60, 72,
62, 50, 60, 71,
61, 55, 61, 72,
62, 56, 60, 70),
in_spec = c (1, 1, 1, 1,
1, 1, 1, 1,
1, 1, 1, 1,
1, 1, 1, 1,
1, 0, 1, 1,
1, 0, 0, 1,
1, 0, 1, 1,
1, 0, 1, 1,
1, 1, 1, 1,
1, 1, 1, 1),
category = c("reading_1", "reading_1", "reading_2", "reading_2",
"reading_1", "reading_1", "reading_2", "reading_2",
"reading_1", "reading_1", "reading_2", "reading_2",
"reading_1", "reading_1", "reading_2", "reading_2",
"reading_1", "reading_1", "reading_2", "reading_2",
"reading_1", "reading_1", "reading_2", "reading_2",
"reading_1", "reading_1", "reading_2", "reading_2",
"reading_1", "reading_1", "reading_2", "reading_2",
"reading_1", "reading_1", "reading_2", "reading_2",
"reading_1", "reading_1", "reading_2", "reading_2")),
row.names = c(NA, -40L), class = c("tbl_df", "tbl", "data.frame"))
在此数据中,in_spec
列中的 1 表示读数在可接受的范围内。如果为 0,则超出指定范围。当数据进入时,它会被标记为符合或不符合规范。
这是我目前的代码:
library(reactable)
reactable(dat[, c("Date", "variable", "reading",
"category", "in_spec")],
columns = list(in_spec = colDef(name = "In Spec",
aggregate = JS("function(values, rows) {
var totalReadings = 0;
var inSpecReadings = 0;
rows.forEach(function(row) {
if(row['in_spec'] == 1) {
inSpecReadings += 1;
}
totalReadings += 1;
})
return (inSpecReadings / totalReadings);
}")
)
),
groupBy = c("category", "variable"))
这是当前输出:
在 reading_1 和 reading_2 类别中,每个变量都显示了符合规格读数的正确百分比。然而,在最外层,每个类别都没有计算我需要的百分比。在每个类别中,我希望它计算符合规格的读数总数和读数总数。然后它应该将符合规格的总数除以读数总数。
在此示例中,第一组 (reading_1) 有 16 个符合规格的读数和 20 个总读数,因此我希望它显示 0.8。第二组 (reading_2) 有 19 个合规读数和 20 个总读数,所以我希望它显示 0.95。
我认为编写自定义聚合函数是解决此问题的正确方法,但我不确定。我对 reactable
调用之外的 dplyr
解决方案持开放态度,但我不想失去个人阅读价值,因此总结可能行不通。
获得所需内容的一种简单方法是将 aggregate
更改为 "mean"
reactable(dat[, c("Date", "variable", "reading",
"category", "in_spec")],
columns = list(in_spec = colDef(name = "In Spec",
aggregate = "mean")),
groupBy = c("category", "variable"))
如果您想在 dplyr
中执行此操作,则必须有两个不同的 group_by
语句和两个不同的变量。
dat %>%
group_by(category, variable) %>%
mutate(pct_var_in = mean(in_spec)) %>%
group_by(category) %>%
mutate(pct_cat_in = mean(in_spec))
使用 R reactable
包,我尝试使用两个 groupBy 变量显示标记读数的百分比。在较低级别的分组中,这是计算正确的百分比。但是在第二层(外层)分组中,它没有显示正确的百分比。
这是数据:
dat <- structure(list(Date = structure(c(1592611200, 1592611200, 1592611200,
1592611200, 1592697600, 1592697600,
1592697600, 1592697600, 1592784000,
1592784000, 1592784000, 1592784000,
1592870400, 1592870400, 1592870400,
1592870400, 1592956800, 1592956800,
1592956800, 1592956800, 1593043200,
1593043200, 1593043200, 1593043200,
1593129600, 1593129600, 1593129600,
1593129600, 1593216000, 1593216000,
1593216000, 1593216000, 1593302400,
1593302400, 1593302400, 1593302400,
1593388800, 1593388800, 1593388800,
1593388800),
tzone = "UTC", class = c("POSIXct", "POSIXt")),
variable = c("Incoming Reading 1", "Outgoing Reading 1", "Incoming Reading 2", "Outgoing Reading 2", "Incoming Reading 1",
"Outgoing Reading 1", "Incoming Reading 2", "Outgoing Reading 2", "Incoming Reading 1", "Outgoing Reading 1",
"Incoming Reading 2", "Outgoing Reading 2", "Incoming Reading 1", "Outgoing Reading 1", "Incoming Reading 2",
"Outgoing Reading 2", "Incoming Reading 1", "Outgoing Reading 1", "Incoming Reading 2", "Outgoing Reading 2",
"Incoming Reading 1", "Outgoing Reading 1", "Incoming Reading 2", "Outgoing Reading 2", "Incoming Reading 1",
"Outgoing Reading 1", "Incoming Reading 2", "Outgoing Reading 2", "Incoming Reading 1", "Outgoing Reading 1",
"Incoming Reading 2", "Outgoing Reading 2", "Incoming Reading 1", "Outgoing Reading 1", "Incoming Reading 2",
"Outgoing Reading 2", "Incoming Reading 1", "Outgoing Reading 1", "Incoming Reading 2", "Outgoing Reading 2"),
reading = c(60, 55, 60, 72,
61, 56, 60, 71,
62, 55, 61, 72,
61, 54, 60, 71,
62, 53, 60, 72,
61, 52, 59, 71,
60, 51, 60, 72,
62, 50, 60, 71,
61, 55, 61, 72,
62, 56, 60, 70),
in_spec = c (1, 1, 1, 1,
1, 1, 1, 1,
1, 1, 1, 1,
1, 1, 1, 1,
1, 0, 1, 1,
1, 0, 0, 1,
1, 0, 1, 1,
1, 0, 1, 1,
1, 1, 1, 1,
1, 1, 1, 1),
category = c("reading_1", "reading_1", "reading_2", "reading_2",
"reading_1", "reading_1", "reading_2", "reading_2",
"reading_1", "reading_1", "reading_2", "reading_2",
"reading_1", "reading_1", "reading_2", "reading_2",
"reading_1", "reading_1", "reading_2", "reading_2",
"reading_1", "reading_1", "reading_2", "reading_2",
"reading_1", "reading_1", "reading_2", "reading_2",
"reading_1", "reading_1", "reading_2", "reading_2",
"reading_1", "reading_1", "reading_2", "reading_2",
"reading_1", "reading_1", "reading_2", "reading_2")),
row.names = c(NA, -40L), class = c("tbl_df", "tbl", "data.frame"))
在此数据中,in_spec
列中的 1 表示读数在可接受的范围内。如果为 0,则超出指定范围。当数据进入时,它会被标记为符合或不符合规范。
这是我目前的代码:
library(reactable)
reactable(dat[, c("Date", "variable", "reading",
"category", "in_spec")],
columns = list(in_spec = colDef(name = "In Spec",
aggregate = JS("function(values, rows) {
var totalReadings = 0;
var inSpecReadings = 0;
rows.forEach(function(row) {
if(row['in_spec'] == 1) {
inSpecReadings += 1;
}
totalReadings += 1;
})
return (inSpecReadings / totalReadings);
}")
)
),
groupBy = c("category", "variable"))
这是当前输出:
在 reading_1 和 reading_2 类别中,每个变量都显示了符合规格读数的正确百分比。然而,在最外层,每个类别都没有计算我需要的百分比。在每个类别中,我希望它计算符合规格的读数总数和读数总数。然后它应该将符合规格的总数除以读数总数。
在此示例中,第一组 (reading_1) 有 16 个符合规格的读数和 20 个总读数,因此我希望它显示 0.8。第二组 (reading_2) 有 19 个合规读数和 20 个总读数,所以我希望它显示 0.95。
我认为编写自定义聚合函数是解决此问题的正确方法,但我不确定。我对 reactable
调用之外的 dplyr
解决方案持开放态度,但我不想失去个人阅读价值,因此总结可能行不通。
获得所需内容的一种简单方法是将 aggregate
更改为 "mean"
reactable(dat[, c("Date", "variable", "reading",
"category", "in_spec")],
columns = list(in_spec = colDef(name = "In Spec",
aggregate = "mean")),
groupBy = c("category", "variable"))
如果您想在 dplyr
中执行此操作,则必须有两个不同的 group_by
语句和两个不同的变量。
dat %>%
group_by(category, variable) %>%
mutate(pct_var_in = mean(in_spec)) %>%
group_by(category) %>%
mutate(pct_cat_in = mean(in_spec))