在交叉验证期间更改测试和训练的大小
Changing the size of test and train during cross validation
我使用 10 折交叉验证执行回归模型。
for train, test in kf.split(X, Y):
print ("Fold ", cv)
print("Train", X[train].shape)
print("Test", X[test].shape)
# define the model
Breg = BayesianRidge(n_iter = 500, tol=0.0000000001)
# fit the data to the model
Breg.fit(X[train], Y[train])
# calculate R2 for each fold and save the value into a file
R2.append(Breg.score(X[test], Y[test]))
# predict in test set
ypred_test = Breg.predict(X[test])
Y_pred_test.append(ypred_test)
# calculate mean squared error for each fold and save into a list
mae.append(mean_absolute_error(Y[test], ypred_test))
当我 运行 模型时,我观察到训练和测试大小的变化。
Fold 1
Train (14754, 9)
Test (1640, 9)
Fold 2
Train (14754, 9)
Test (1640, 9)
Fold 3
Train (14754, 9)
Test (1640, 9)
Fold 4
Train (14754, 9)
Test (1640, 9)
Fold 5
Train (14755, 9)
Test (1639, 9)
Fold 6
Train (14755, 9)
Test (1639, 9)
Fold 7
Train (14755, 9)
Test (1639, 9)
Fold 8
Train (14755, 9)
Test (1639, 9)
Fold 9
Train (14755, 9)
Test (1639, 9)
Fold 10
Train (14755, 9)
Test (1639, 9)
可以看到fold 5后training的size增加了1,test的size减少了1
知道这会如何发生以及如何解决吗?
提前致谢
答案可以在 KFold
的 documentation 中找到,我认为这就是 kf.split
中的 kf
所代表的意思。
在注释中,它说:
The first n_samples % n_splits
folds have size n_samples // n_splits + 1
, other folds have size n_samples // n_splits
, where n_samples is the
number of samples.
通过插入数字,您可以看到前 4 个拆分的大小为 n_samples // n_splits + 1
,其余的大小为 n_samples // n_splits
,因此大小差为 +1
].
我使用 10 折交叉验证执行回归模型。
for train, test in kf.split(X, Y):
print ("Fold ", cv)
print("Train", X[train].shape)
print("Test", X[test].shape)
# define the model
Breg = BayesianRidge(n_iter = 500, tol=0.0000000001)
# fit the data to the model
Breg.fit(X[train], Y[train])
# calculate R2 for each fold and save the value into a file
R2.append(Breg.score(X[test], Y[test]))
# predict in test set
ypred_test = Breg.predict(X[test])
Y_pred_test.append(ypred_test)
# calculate mean squared error for each fold and save into a list
mae.append(mean_absolute_error(Y[test], ypred_test))
当我 运行 模型时,我观察到训练和测试大小的变化。
Fold 1
Train (14754, 9)
Test (1640, 9)
Fold 2
Train (14754, 9)
Test (1640, 9)
Fold 3
Train (14754, 9)
Test (1640, 9)
Fold 4
Train (14754, 9)
Test (1640, 9)
Fold 5
Train (14755, 9)
Test (1639, 9)
Fold 6
Train (14755, 9)
Test (1639, 9)
Fold 7
Train (14755, 9)
Test (1639, 9)
Fold 8
Train (14755, 9)
Test (1639, 9)
Fold 9
Train (14755, 9)
Test (1639, 9)
Fold 10
Train (14755, 9)
Test (1639, 9)
可以看到fold 5后training的size增加了1,test的size减少了1
知道这会如何发生以及如何解决吗?
提前致谢
答案可以在 KFold
的 documentation 中找到,我认为这就是 kf.split
中的 kf
所代表的意思。
在注释中,它说:
The first
n_samples % n_splits
folds have sizen_samples // n_splits + 1
, other folds have sizen_samples // n_splits
, where n_samples is the number of samples.
通过插入数字,您可以看到前 4 个拆分的大小为 n_samples // n_splits + 1
,其余的大小为 n_samples // n_splits
,因此大小差为 +1
].