双轴上带有 pandas DateTimeIndex 的热图

Heatmap with pandas DateTimeIndex on both axis

我想使用 DateTimeIndex 从 pandas DataFrame(或系列)制作热图,这样我在 x 轴上有小时,在 y 轴上有天,两个刻度标签都以 DateTimeIndex 样式显示.

如果我执行以下操作:

    import pandas as pd
    import numpy as np
    import seaborn as sns

    df = pd.DataFrame(np.random.randint(10, size=4*24*200))
    df.index = pd.date_range(start='2019-02-01 11:30:00', periods=200*24*4, freq='15min')

    df['minute'] = df.index.hour*60 + df.index.minute
    df['dayofyear'] = df.index.month + df.index.dayofyear

    df = df.pivot(index='dayofyear', columns='minute', values=df.columns[0])
    sns.heatmap(df)

索引明显丢失了日期时间格式:

我想要的是这样的东西(我用一个复杂的、不可泛化的函数实现的,显然甚至不能正常工作):

有人知道用 python 创建这种热图的巧妙方法吗?


编辑:

我创建的函数:

    def plot_heatmap(df_in, plot_column=0, figsize=(20,12), vmin=None, vmax=None, cmap='jet', xlabel='hour (UTC)', ylabel='day', rotation=0, freq='5s'):
        '''
        Plots heatmap with date labels

        df_in:    pandas DataFrame od pandas Series
        plot_column:  column to plot if DataFrame has multiple columns

        ...

        '''

        # convert to DataFrame in case a Series is passed:
        try:
            df_in = df_in.to_frame()
        except AttributeError:
            pass
        
        # make copy in order not to overrite input (in case input is an object attribute)
        df = df_in.copy()

        # pad missing dates:
        idx = pd.date_range(df_in.index[0], df_in.index[-1], freq=freq)
        df = df.reindex(idx, fill_value=np.nan)


        df['hour'] = df.index.hour*3600 + df.index.minute*60 + df.index.second
        df['dayofyear'] = df.index.month + df.index.dayofyear

        # Create mesh for heatmap plotting:
        pivot = df.pivot(index='dayofyear', columns='hour', values=df.columns[plot_column])

        # plot
        plt.figure(figsize=figsize)
        sns.heatmap(pivot, cmap=cmap)

        # set xticks
        plt.xticks(np.linspace(0,pivot.shape[1],25), labels=range(25))
        plt.xlabel(xlabel)

        # set yticks
        ylabels = []
        ypositions = []

        day0 = df['dayofyear'].unique().min()
        for day in df['dayofyear'].unique():
            day_delta = day-day0
            # create pandas Timestamp
            temp_tick = df.index[0] + pd.Timedelta('%sD' %day_delta)
            # check wheter tick shall be shown or not
            if temp_tick.day==1 or temp_tick.day==15:
                temp_tick_nice = '%s-%s-%s' %(temp_tick.year, temp_tick.month, temp_tick.day)
                ylabels.append(temp_tick_nice)
                ypositions.append(day_delta)


        plt.yticks(ticks=ypositions, labels=ylabels, rotation=0)
        plt.ylabel(ylabel)

日期格式将消失,因为您这样做了:

df['dayofyear'] = df.index.month + df.index.dayofyear

这里,两个数列都是整数,所以df['dayofyear']也是integer-typed。

相反,执行:

df['dayofyear'] = df.index.date

然后你得到输出:

如果 DatetimeIndex 的频率小于 1 分钟,我现在找到的最佳解决方案如下:

import pandas as pd
import numpy as np
import seaborn as sns

freq = '30s'

df = pd.DataFrame(np.random.randint(10, size=4*24*200*20))
df.index = pd.date_range(start='2019-02-01 11:30:00', periods=200*24*4*20, freq=freq)

df['hour'] = df.index.strftime('%H:%M:%S')
df['dayofyear'] = df.index.date


df = df.pivot(index='dayofyear', columns='hour', values=df.columns[0])
df.columns = pd.DatetimeIndex(df.columns).strftime('%H:%M')
df.index = pd.DatetimeIndex(df.index).strftime('%m/%Y')

xticks_spacing = int(pd.Timedelta('2h')/pd.Timedelta(freq))
ax = sns.heatmap(df, xticklabels=xticks_spacing, yticklabels=30)
plt.yticks(rotation=0)

产生这个结果:

唯一的缺陷是使用此方法时月刻度位置没有很好地定义和精确...