如何正确标注混淆矩阵?
How to correctly label confusion matrix?
尝试做一些 NLP(从语料库中逐字提取并用特定主题标记它们作为标签)。
我在创建混淆矩阵的部分,但我不知道如何正确标记矩阵,以便将标签归因于矩阵的正确部分。
具体来说,如果我有以下混淆矩阵,我怎么知道标签应该放在哪里
正确居住?
whats label 1? [ 1 0 0 0 0 0 0 0 0 0 0 0 0]
whats label 2? [ 0 5 0 0 0 0 3 0 0 0 0 0 0]
etc.. [ 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 1 0 6 0 1 1 0 0 0 0 0 0]
[ 0 0 0 0 1 0 0 0 0 1 0 0 0]
[ 0 0 0 1 0 1 0 0 0 0 0 0 0]
[ 0 1 0 0 0 0 13 0 0 0 0 0 0]
[ 0 0 0 0 0 0 1 0 0 0 0 0 0]
[ 0 0 1 0 0 0 1 0 5 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 1 0 1 0 0 0 0 0 1]
[ 0 0 0 0 0 0 1 0 0 0 0 2 0]
[ 0 0 0 0 0 0 0 1 0 0 0 0 0]
这是我的代码:
#bag of words ---------------------------------------------------------------
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
def cv(data):
count_vectorizer = CountVectorizer()
emb = count_vectorizer.fit_transform(data)
return emb, count_vectorizer
list_corpus = questions_and_labels['clean_text_lemmed'].tolist()
list_labels = questions_and_labels["category_1_level_1"].tolist()
X_train, X_test, y_train, y_test = train_test_split(list_corpus, list_labels, test_size=0.2,
random_state=40)
X_train_counts, count_vectorizer = cv(X_train)
X_test_counts = count_vectorizer.transform(X_test)
# Confusion Matrix ---------------------------------------------------------------
import numpy as np
import itertools
from sklearn.metrics import confusion_matrix
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.winter):
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title, fontsize=30)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, fontsize=10, rotation=90)
plt.yticks(tick_marks, classes, fontsize=10)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center",
color="white" if cm[i, j] < thresh else "black", fontsize=40)
plt.tight_layout()
plt.ylabel('True label', fontsize=30)
plt.xlabel('Predicted label', fontsize=30)
return plt
cm = confusion_matrix(y_test, y_predicted_counts)
fig = plt.figure(figsize=(20, 20))
plot = plot_confusion_matrix(cm, classes = HOW_DO_I_GET_THIS?, normalize=False, title='Confusion matrix')
plt.show()
print(cm)
额外的上下文,我一直在关注并模仿这个例子:https://github.com/hundredblocks/concrete_NLP_tutorial/blob/master/NLP_notebook.ipynb
但在他们的示例中,他们对标签进行了硬编码...我不确定他们是如何得出正确顺序的
找到答案。
sklearn.metrics 的 confusion_matrix 有一个名为 labels 的协议。
例如,如果您将所有不同的标签放在一个列表中,则列表中标签的顺序将传播并决定混淆矩阵的顺序。
我的例子:
class_names = df.labels.unique() # Here im making the unique labels object the order here will dictate the order in confusion matrix
cm = confusion_matrix(y_test, y_predicted_counts, labels=class_names) #here i tell the cm to use my class_names object for ordering
fig = plt.figure(figsize=(20, 20))
plot = plot_confusion_matrix(cm, classes = class_names, normalize=False, title='Confusion matrix')
plt.show()
尝试做一些 NLP(从语料库中逐字提取并用特定主题标记它们作为标签)。
我在创建混淆矩阵的部分,但我不知道如何正确标记矩阵,以便将标签归因于矩阵的正确部分。
具体来说,如果我有以下混淆矩阵,我怎么知道标签应该放在哪里 正确居住?
whats label 1? [ 1 0 0 0 0 0 0 0 0 0 0 0 0]
whats label 2? [ 0 5 0 0 0 0 3 0 0 0 0 0 0]
etc.. [ 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 1 0 6 0 1 1 0 0 0 0 0 0]
[ 0 0 0 0 1 0 0 0 0 1 0 0 0]
[ 0 0 0 1 0 1 0 0 0 0 0 0 0]
[ 0 1 0 0 0 0 13 0 0 0 0 0 0]
[ 0 0 0 0 0 0 1 0 0 0 0 0 0]
[ 0 0 1 0 0 0 1 0 5 0 0 0 0]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0]
[ 0 0 0 0 1 0 1 0 0 0 0 0 1]
[ 0 0 0 0 0 0 1 0 0 0 0 2 0]
[ 0 0 0 0 0 0 0 1 0 0 0 0 0]
这是我的代码:
#bag of words ---------------------------------------------------------------
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
def cv(data):
count_vectorizer = CountVectorizer()
emb = count_vectorizer.fit_transform(data)
return emb, count_vectorizer
list_corpus = questions_and_labels['clean_text_lemmed'].tolist()
list_labels = questions_and_labels["category_1_level_1"].tolist()
X_train, X_test, y_train, y_test = train_test_split(list_corpus, list_labels, test_size=0.2,
random_state=40)
X_train_counts, count_vectorizer = cv(X_train)
X_test_counts = count_vectorizer.transform(X_test)
# Confusion Matrix ---------------------------------------------------------------
import numpy as np
import itertools
from sklearn.metrics import confusion_matrix
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.winter):
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title, fontsize=30)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, fontsize=10, rotation=90)
plt.yticks(tick_marks, classes, fontsize=10)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center",
color="white" if cm[i, j] < thresh else "black", fontsize=40)
plt.tight_layout()
plt.ylabel('True label', fontsize=30)
plt.xlabel('Predicted label', fontsize=30)
return plt
cm = confusion_matrix(y_test, y_predicted_counts)
fig = plt.figure(figsize=(20, 20))
plot = plot_confusion_matrix(cm, classes = HOW_DO_I_GET_THIS?, normalize=False, title='Confusion matrix')
plt.show()
print(cm)
额外的上下文,我一直在关注并模仿这个例子:https://github.com/hundredblocks/concrete_NLP_tutorial/blob/master/NLP_notebook.ipynb
但在他们的示例中,他们对标签进行了硬编码...我不确定他们是如何得出正确顺序的
找到答案。
sklearn.metrics 的 confusion_matrix 有一个名为 labels 的协议。
例如,如果您将所有不同的标签放在一个列表中,则列表中标签的顺序将传播并决定混淆矩阵的顺序。
我的例子:
class_names = df.labels.unique() # Here im making the unique labels object the order here will dictate the order in confusion matrix
cm = confusion_matrix(y_test, y_predicted_counts, labels=class_names) #here i tell the cm to use my class_names object for ordering
fig = plt.figure(figsize=(20, 20))
plot = plot_confusion_matrix(cm, classes = class_names, normalize=False, title='Confusion matrix')
plt.show()