Tensorflow:TFLiteConverter(保存模型 -> TFLite)要求所有操作数和结果具有兼容的元素类型

Tensorflow: TFLiteConverter (Saved Model -> TFLite) requires all operands and results to have compatible element types

几天来我一直被这个问题困扰,但是当我尝试使用下面的代码将 saved_model.pb 文件转换为 .tflite 模型时,出现错误(下面的堆栈跟踪)。


转换代码:

converter = tf.lite.TFLiteConverter.from_saved_model(
    "/tmp/test_saved_model2")
converter.optimizations = [tf.lite.Optimize.DEFAULT]
quantized_model = converter.convert()
open("converted_model.tflite", "wb").write(quantized_model)

堆栈跟踪:

Traceback (most recent call last):
  File "C:\Users\Mr.Ace\AppData\Roaming\Python\Python38\site-packages\tensorflow\lite\python\convert.py", line 196, in toco_convert_protos
    model_str = wrap_toco.wrapped_toco_convert(model_flags_str,
  File "C:\Users\Mr.Ace\AppData\Roaming\Python\Python38\site-packages\tensorflow\lite\python\wrap_toco.py", line 32, in wrapped_toco_convert
    return _pywrap_toco_api.TocoConvert(
Exception: <unknown>:0: error: loc("Func/StatefulPartitionedCall/input/_0"): requires all operands and results to have compatible element types
<unknown>:0: note: loc("Func/StatefulPartitionedCall/input/_0"): see current operation: %1 = "tf.Identity"(%arg0) {device = ""} : (tensor<1x?x?x3x!tf.quint8>) -> tensor<1x?x?x3xui8>


During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "c:/Data/TFOD/tflite_converter.py", line 27, in <module>
    quantized_model = converter.convert()
  File "C:\Users\Mr.Ace\AppData\Roaming\Python\Python38\site-packages\tensorflow\lite\python\lite.py", line 1076, in convert
    return super(TFLiteConverterV2, self).convert()
  File "C:\Users\Mr.Ace\AppData\Roaming\Python\Python38\site-packages\tensorflow\lite\python\lite.py", line 899, in convert
    return super(TFLiteFrozenGraphConverterV2,
  File "C:\Users\Mr.Ace\AppData\Roaming\Python\Python38\site-packages\tensorflow\lite\python\lite.py", line 629, in convert
    result = _toco_convert_impl(
  File "C:\Users\Mr.Ace\AppData\Roaming\Python\Python38\site-packages\tensorflow\lite\python\convert.py", line 569, in toco_convert_impl
    data = toco_convert_protos(
  File "C:\Users\Mr.Ace\AppData\Roaming\Python\Python38\site-packages\tensorflow\lite\python\convert.py", line 202, in toco_convert_protos
    raise ConverterError(str(e))
tensorflow.lite.python.convert.ConverterError: <unknown>:0: error: loc("Func/StatefulPartitionedCall/input/_0"): requires all operands and results to have compatible element types
<unknown>:0: note: loc("Func/StatefulPartitionedCall/input/_0"): see current operation: %1 = "tf.Identity"(%arg0) {device = ""} : (tensor<1x?x?x3x!tf.quint8>) -> tensor<1x?x?x3xui8>

我已经尝试使用 tf-nightly,虽然它可以工作,但它不会创建我需要在 Android Phone 上使用它的“FlatBuffer”模型。我该如何解决这个问题?

我之前遇到过同样的问题,现在可以通过以下3个步骤训练tflite模型:

  1. 训练数据

    !python /content/models/research/object_detection/model_main_tf2.py
    --pipeline_config_path={pipeline_config_path}
    --model_dir={model_dir}
    --alsologtostderr
    --num_train_steps={num_steps}
    --sample_1_of_n_eval_examples=1
    --num_eval_steps={num_eval_steps}

  2. 导出 tflite 2 图:

    !python models/research/object_detection/export_tflite_graph_tf2.py
    --pipeline_config_path={pipeline_config_path}
    --trained_checkpoint_dir={model_dir} --output_directory=tflite_exported

  3. 将 .pb 转换为 tflite

    !tflite_convert --output_file 'model.tflite' --saved_model_dir 'tflite_exported/saved_model'

我看到有2点需要注意:

  1. (tensor<1x?x?x3x!tf.quint8>) -> tensor<1x?x?x3xui8>

看起来您的模型具有动态形状,并且 tflite does not work well with them. First of all convert your model from saved_model to tflite with fixed input. See good way 例如:

tflite_convert \
  --saved_model_dir="/tmp/test_saved_model2" \
  --output_file='model.tflite' \
  --input_shapes=1,256,256,3 \     # <-- here, you set an
                                  #     arbitrary valid shape
  --input_arrays='input' \         
  --output_arrays='Softmax'

另一种方法是使 saved_model 具有固定的 input-output 形状,这样您就不需要在 saved_model->lite 转换期间指定它。这是 TF2

only 选项
  1. converter.optimizations = [tf.lite.Optimize.DEFAULT]

在调试过程中尽量避免任何类型的优化,这样您就可以减少搜索错误的地方。这是大意。