Anova 使用 STATSMODELS 的一种方式

One way Anova using STATSMODELS

我正在尝试在三组之间执行单向方差分析。我已经能够使用 SCIPY.STATS 获得 F 统计量和 F 分布的 p 值。但是,我更喜欢将方差分析 table 作为具有平方和的类似 R 的输出。下面给出了我的 SCIPY.STATS 一种方差分析方法的代码。 STATSMODELS ANOVA 的所有文档都使用 pandas 数据框。非常感谢任何有关如何为 STATSMODELS 调整现有代码的帮助。

import numpy as np
import pandas as pd
import scipy.stats as stats
from scipy.stats import f_oneway
data1= pd.read_table('/Users/Hrihaan/Desktop/Sample_A.txt', dtype=float, header=None, sep='\s+').values
data2= pd.read_table('/Users/Hrihaan/Desktop/Sample_B.txt', dtype=float, header=None, sep='\s+').values
data3= pd.read_table('/Users/Hrihaan/Desktop/Sample_C.txt', dtype=float, header=None, sep='\s+').values
Param_1=data1[:,0]
Param_2=data2[:,0]
Param_3=data3[:,0]
f_oneway(Param_1, Param_2, Param_3) 

您可以使用长格式的数据,首先我会生成一些看起来像您的数据的内容:

import numpy as np
import pandas as pd
import scipy.stats as stats
from scipy.stats import f_oneway

np.random.seed(111)

Param_1=np.random.normal(0,1,50)
Param_2=np.random.normal(0,1,40)
Param_3=np.random.normal(0,1,30)

f_oneway(Param_1, Param_2, Param_3) 

F_onewayResult(statistic=0.43761348608371037, pvalue=0.6466275522246159)

你可以像下面那样制作长 data.frame 或者基本上在你读入文件后制作它,然后做一个 pd.concat:

df = pd.DataFrame({'val':np.concatenate([Param_1,Param_2,Param_3]),
             'data':np.repeat(['A','B','C'],[len(Param_1),len(Param_2),len(Param_3)])})

df.head()

    val data
0   -1.133838   A
1   0.384319    A
2   1.496554    A
3   -0.355382   A
4   -0.787534   A

现在我们拟合一个线性模型,并对其进行方差分析:

import statsmodels.api as sm
from statsmodels.formula.api import ols

mod = ols('val ~ data',data=df).fit()

sm.stats.anova_lm(mod, typ=1) 

          df    sum_sq  mean_sq F   PR(>F)
data    2.0 0.794858    0.397429    0.437613    0.646628
Residual    117.0   106.256352  0.908174    NaN NaN