计算数据框中每个第二个值的平均值
Calculating mean for every second value in a dataframe
我想按平均值聚合每两个单元格值,然后沿着数据框的列继续执行相同的过程。 更准确地说,请参阅以下数据框摘录:
X Y Z
1 FRI 200101010000 -6.72
2 FRI 200101010030 -6.30
3 FRI 200101010100 -6.26
4 FRI 200101010130 -5.82
5 FRI 200101010200 -5.64
6 FRI 200101010230 -5.29
7 FRI 200101010300 -5.82
8 FRI 200101010330 -5.83
9 FRI 200101010400 -5.83
10 FRI 200101010430 -6.04
11 FRI 200101010500 -5.80
12 FRI 200101010530 -6.09
我想计算以 00 和 30 结尾的每个 Z 和 Y 的平均值,这意味着计算#row 1+2、#row 3+4、#row 5+6 等的平均值。 .看看我在这里期待什么:
X Y Z
1 FRI 200101010100 -6.51
2 FRI 200101010200 -6.04
3 FRI 200101010300 -5.47
...
解释:Y 是时间:YYYYMMDDhhmm 我想将 30 分钟的测量结果平均为 1 小时的测量结果
这是一个可能的 data.table
解决方案
library(data.table)
setDT(df)[, .(Y = Y[1L], Z = mean(Z)), by = .(X, indx = cumsum(substr(Y, 11, 12) == '00'))]
# X indx Y Z
# 1: FRI 1 200101010000 -6.510
# 2: FRI 2 200101010100 -6.040
# 3: FRI 3 200101010200 -5.465
# 4: FRI 4 200101010300 -5.825
# 5: FRI 5 200101010400 -5.935
# 6: FRI 6 200101010500 -5.945
或者根据@akruns 的评论,使用来自 base 的 aggregate
(虽然输出可能需要一些额外的 tweeking)
aggregate(Z ~ X + indx, transform(df, indx = cumsum(substr(Y, 11, 12) == '00')), mean)
dplyr 版本
library(dplyr)
df$Y <- as.character(df$Y)
means <- df %>%
group_by(hour = substr(Y, start = 1, stop=10)) %>% summarise(Z = mean(Z))
> means
Source: local data frame [6 x 2]
hour Z
1 2001010100 -6.510
2 2001010101 -6.040
3 2001010102 -5.465
4 2001010103 -5.825
5 2001010104 -5.935
6 2001010105 -5.945
按不带最后两位数字的 Y 变量对数据进行分组。
一个 base-R 解决方案,我首先将向量分成几部分并计算每个部分的平均值,这当然假设您指定的顺序始终成立。最后我将它们组合起来给出你的结果:
Z <- unlist(lapply(split(df$Z, ceiling(seq_along(df$Z) / 2)), mean))
new_df <- cbind(df[seq(1,nrow(df), 2), c("X", "Y")], Z)
输出:
X Y Z
1 FRI 200101010000 -6.510
3 FRI 200101010100 -6.040
5 FRI 200101010200 -5.465
7 FRI 200101010300 -5.825
9 FRI 200101010400 -5.935
11 FRI 200101010500 -5.945
虽然这没有解决 OP,但如果您有 POSIXct
列,通常按秒聚合,您可以:
library(lubridate)
library(tidyverse)
s <- seq(from=Sys.time(), length.out = 100, by=0.4)
df = data.frame(time=s,v=rnorm(length(s)))
df %>%
group_by(time=floor_date(time, "1 second")) %>%
summarize(v=mean(v)) # you can put any other interval like 5 minute