为什么使用 Boto3 通过 AWS Sagemaker 创建终端节点需要这么长时间?
Why did it take so long to create endpoint with AWS Sagemaker using Boto3?
根据存储的端点配置创建我的端点需要 45 分钟。 (我测试过它也有效)。这是我第一次使用 boto3 来执行此操作,而之前我只是使用 Sagemaker Web GUI 从端点配置创建端点。感谢对我的代码的建议:
import boto3
sagemaker_client = boto3.client('sagemaker')
response = sagemaker_client.create_endpoint(
EndpointName='sagemaker-tensorflow-x',
EndpointConfigName='sagemaker-tensorflow-x'
)
注意:我已将端点名称的最后一部分替换为 x
。
AWS 目前 issues 与 Sagemaker:
Increased Error Rates and Latencies for Multiple API operations
5:33 PM PDT We are investigating increased error rates and latencies for CreateTrainingJob, CreateHyperParameterTuningJob, and CreateEndpoint API operations in the US-EAST-1 Region. Previously created jobs and endpoints are unaffected.
6:04 PM PDT We are continuing to investigate increased error rates and latencies for CreateTrainingJob, CreateHyperParameterTuningJob, and CreateEndpoint API operations in the US-EAST-1 Region. Previously created jobs and endpoints are unaffected.
根据存储的端点配置创建我的端点需要 45 分钟。 (我测试过它也有效)。这是我第一次使用 boto3 来执行此操作,而之前我只是使用 Sagemaker Web GUI 从端点配置创建端点。感谢对我的代码的建议:
import boto3
sagemaker_client = boto3.client('sagemaker')
response = sagemaker_client.create_endpoint(
EndpointName='sagemaker-tensorflow-x',
EndpointConfigName='sagemaker-tensorflow-x'
)
注意:我已将端点名称的最后一部分替换为 x
。
AWS 目前 issues 与 Sagemaker:
Increased Error Rates and Latencies for Multiple API operations
5:33 PM PDT We are investigating increased error rates and latencies for CreateTrainingJob, CreateHyperParameterTuningJob, and CreateEndpoint API operations in the US-EAST-1 Region. Previously created jobs and endpoints are unaffected.
6:04 PM PDT We are continuing to investigate increased error rates and latencies for CreateTrainingJob, CreateHyperParameterTuningJob, and CreateEndpoint API operations in the US-EAST-1 Region. Previously created jobs and endpoints are unaffected.