"Wrong" TF IDF 分数

"Wrong" TF IDF Scores

我有 1000 个 .txt 文件并计划搜索各种关键字并计算它们的 TF-IDF 分数。但由于某种原因,结果 > 1。然后我用 2 个 .txt 文件进行了测试:“我正在研究 nfc”“你不需要 AI “。对于 nfc 和 AI,TF-IDF 应该是 0.25 但是当我打开 .csv 时它说 1.4054651081081644.

我必须承认我没有为代码选择最高效的方式。我认为错误出在文件夹上,因为我最初计划按年份检查文件(2000-2010 年的年度报告)。但我取消了这些计划,并决定将所有年度报告作为一个整体来检查。我认为文件夹解决方法仍然是问题所在。我放了2个txt。文件放入 文件夹“-”。有没有办法让它正确计数?

import numpy as np
import os
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from pathlib import Path


# root dir
root = '/Users/Tom/PycharmProjects/TextMining/'
#
words_to_find = ['AI', 'nfc']
# tf_idf file writing
wrote_tf_idf_header = False
tf_idf_file_idx = 0
#
vectorizer_tf_idf = TfidfVectorizer(max_df=.80, min_df=1, stop_words='english', use_idf=True, norm=None, vocabulary=words_to_find, ngram_range=(1, 3))
vectorizer_cnt = CountVectorizer(stop_words='english', vocabulary=words_to_find, ngram_range=(1, 3))
#
years = ['-']
year_folders = [root + folder for folder in years]
# remove previous results file
if os.path.isfile('summary.csv'):
    os.remove('summary.csv')
if os.path.isfile('tf_idf.csv'):
    os.remove('tf_idf.csv')
#process every folder (for every year)
for year_idx, year_folder in enumerate(year_folders):
    # get file paths in folder
    file_paths = []
    for file in Path(year_folder).rglob("*.txt"):
        file_paths.append(file)
    # count of files for each year
    file_cnt = len(file_paths)
    # read every file's text as string
    docs_per_year = []
    words_in_folder = 0
    for txt_file in file_paths:
        with open(txt_file, encoding='utf-8', errors="replace") as f:
            txt_file_as_string = f.read()
            words_in_folder += len(txt_file_as_string.split())
            docs_per_year.append(txt_file_as_string)
    #
    tf_idf_documents_as_array = vectorizer_tf_idf.fit_transform(docs_per_year).toarray()
    # tf_idf_documents_as_array = vectorizer_tf_idf.fit_transform([' '.join(docs_per_year)]).toarray()
    #
    cnt_documents_as_array = vectorizer_cnt.fit_transform(docs_per_year).toarray()
    #
    with open('summary.csv', 'a') as f:
        f.write('Index;Term;Count;Df;Idf;Rel. Frequency\n')
        for idx, word in enumerate(words_to_find):
            abs_freq = cnt_documents_as_array[:, idx].sum()
            f.write('{};{};{};{};{};{}\n'.format(idx + 1,
                                                    word,
                                                    np.count_nonzero(cnt_documents_as_array[:, idx]),
                                                    abs_freq,
                                                    vectorizer_tf_idf.idf_[idx],
                                                    abs_freq / words_in_folder))
        f.write('\n')

    with open('tf_idf.csv', 'a') as f:
        if not wrote_tf_idf_header:
            f.write('{}\n'.format(years[year_idx]))
            f.write('Index;Year;File;')
            for word in words_to_find:
                f.write('{};'.format(word))
            f.write('Sum\n')
            wrote_tf_idf_header = True

        for idx, tf_idfs in enumerate(tf_idf_documents_as_array):
            f.write('{};{};{};'.format(tf_idf_file_idx, years[year_idx], file_paths[idx].name))
            for word_idx, _ in enumerate(words_to_find):
                f.write('{};'.format(tf_idf_documents_as_array[idx][word_idx]))
            f.write('{}\n'.format(sum(tf_idf_documents_as_array[idx])))

            tf_idf_file_idx += 1

print()

我认为错误在于,您将范数定义为 norm=None,但范数应为 l1l2,如 documentation 中所指定。