使用 openmp 在 C++ 中进行并行编程
Parallel programming in c++ with openmp
这是我第一次尝试并行化我的代码。
这种尝试似乎会导致 "race" 并且代码会产生无意义的值。
是否有可能以一种简单的方式并行化我的代码?
我知道代码块很长,对此感到抱歉。
我的所有变量都在您在此处看到的代码之前声明。
非常感谢您对此的帮助!
int numthreads=2;
omp_set_num_threads(numthreads);
#pragma omp parallel for
for (int t = 1; t <= tmax; ++t) {
iter=0;
while(iter<5){
switch(iter){
case 1:
for(int j=0;j<Nx+1;++j){
k_1(Nx + 1, j) = k_1(Nx - 1, j);
k_1(0, j) = k_1(2, j);
k_1(j, Ny + 1) = k_1(j, Ny - 1);
k_1(j, 0) = C_new(j, 2);
}
k_0=a2*dt*k_1;
break;
case 2:
for(int j=0;j<Nx+1;++j){
k_2(Nx + 1, j) = k_2(Nx - 1, j);
k_2(0, j) = k_2(2, j);
k_2(j, Ny + 1) = k_2(j, Ny - 1);
k_2(j, 0) = C_new(j, 2);
}
k_0=a3*dt*k_2;
break;
case 3:
for(int j=0;j<Nx+1;++j){
k_3(Nx + 1, j) = k_3(Nx - 1, j);
k_3(0, j) = k_3(2, j);
k_3(j, Ny + 1) = k_3(j, Ny - 1);
k_3(j, 0) = k_3(j, 2);
}
k_0=a4*dt*k_3;
break;
case 4:
k_0.fill(0);
break;
}
for (int i = 1; i <= Nx; ++i) {
for (int j = 1; j <= Ny; ++j) {
// Computing ghost nodes values around (i,j)
//Order parameter
Psi_cipjp = (psi_old(i + 1, j + 1) + psi_old(i, j + 1) + psi_old(i, j) + psi_old(i + 1, j)) / 4;
Psi_cipjm = (psi_old(i + 1, j) + psi_old(i, j) + psi_old(i, j - 1) + psi_old(i + 1, j - 1)) / 4;
Psi_cimjp = (psi_old(i, j + 1) + psi_old(i - 1, j + 1) + psi_old(i - 1, j) + psi_old(i, j)) / 4;
Psi_cimjm = (psi_old(i, j) + psi_old(i - 1, j) + psi_old(i - 1, j - 1) + psi_old(i, j - 1)) / 4;
// UPDATING THE ORDER PARAMETER PSI !//
// Calculating right edge flux JR
DERX = (psi_old(i + 1, j) - psi_old(i, j)) / dx;
DERY = (Psi_cipjp - Psi_cipjm) / dx;
// Setting anisotropy parameters
aniso(DERX, DERY, a_s, a_12, eps, epsilon);
JR = Atheta * (Atheta * DERX + Aptheta * DERY);
// Calculating left edge flux JL
DERX = (psi_old(i, j) - psi_old(i - 1, j)) / dx;
DERY = (Psi_cimjp - Psi_cimjm) / dx;
// Setting anisotropy parameters
aniso(DERX, DERY, a_s, a_12, eps, epsilon);
JL = Atheta * (Atheta * DERX + Aptheta * DERY);
// Calculating top edge flux JT
DERY = (psi_old(i, j + 1) - psi_old(i, j)) / dx;
DERX = (Psi_cipjp - Psi_cimjp) / dx;
// Setting anisotropy parameters
aniso(DERX, DERY, a_s, a_12, eps, epsilon);
JT = Atheta * (Atheta * DERY - Aptheta * DERX);
// Calculating bottom edge flux JB
DERY = (psi_old(i, j) - psi_old(i, j - 1)) / dx;
DERX = (Psi_cipjm - Psi_cimjm) / dx;
// Setting anisotropy parameters
aniso(DERX, DERY, a_s, a_12, eps, epsilon);
JB = Atheta * (Atheta * DERY - Aptheta * DERX);
// Update psi
M = (1 - C_old(i, j)) * Ma + C_old(i, j) * Mb;
g = pow(psi_old(i, j), 2) * pow((1 - psi_old(i, j)), 2);
gprime = 2 * psi_old(i, j) * (1 - psi_old(i, j)) * (1 - 2 * psi_old(i, j));
HA = Wa * gprime + 30 * g * H_A * (1 /( T_old(i, j)+k_0(i,j)) - 1 / Tm_A);
HB = Wb * gprime + 30 * g * H_B * (1 / (T_old(i, j)+k_0(i,j)) - 1 / Tm_B);
H = (1 - C_old(i, j)) * HA + C_old(i, j) * HB;
rand=distr(gen);
Noise=M*A_noise*rand*16*g*((1-C_old(i,j))*HA+C_old(i,j)*HB);
dpsi=(dt / dx) * ((JR - JL + JT - JB) * M * Epsilon2 - dx * M * H-dx*Noise);
psi_new(i, j) = psi_old(i, j) + dpsi;
dpsi_dt(i, j) = dpsi/ dt;
//std::cout<<"dpsi_dt="<<dpsi_dt(i,j)<<std::endl;
// UPDATING THE CONCENTRATION FIELD ! //
//Evaluating field values on finite volume boundary
dpsi_dt_R = (dpsi_dt(i + 1, j) + dpsi_dt(i, j)) / 2;
dpsi_dt_L = (dpsi_dt(i, j) + dpsi_dt(i - 1, j)) / 2;
dpsi_dt_T = (dpsi_dt(i, j + 1) + dpsi_dt(i, j)) / 2;
dpsi_dt_B = (dpsi_dt(i, j) + dpsi_dt(i, j - 1)) / 2;
psi_R = (psi_old(i + 1, j) + psi_old(i, j)) / 2;
psi_L = (psi_old(i, j) + psi_old(i - 1, j)) / 2;
psi_T = (psi_old(i, j + 1) + psi_old(i, j)) / 2;
psi_B = (psi_old(i, j) + psi_old(i, j - 1)) / 2;
C_R = (C_old(i + 1, j) + C_old(i, j)) / 2;
C_L = (C_old(i, j) + C_old(i - 1, j)) / 2;
C_T = (C_old(i, j + 1) + C_old(i, j)) / 2;
C_B = (C_old(i, j) + C_old(i, j - 1)) / 2;
T_R = (T_old(i + 1, j)+k_0(i+1,j) + T_old(i, j)+k_0(i,j)) / 2;
T_L = (T_old(i, j)+k_0(i,j) + T_old(i - 1, j)+k_0(i-1,j)) / 2;
T_T = (T_old(i, j + 1)+k_0(i,j+1) + T_old(i, j)+k_0(i,j)) / 2;
T_B = (T_old(i, j)+k_0(i,j) + T_old(i, j - 1)+k_0(i,j-1)) / 2;
Psi_cipjp = (psi_old(i + 1, j + 1) + psi_old(i, j + 1) + psi_old(i, j) + psi_old(i + 1, j)) / 4;
Psi_cipjm = (psi_old(i + 1, j) + psi_old(i, j) + psi_old(i, j - 1) + psi_old(i + 1, j - 1)) / 4;
Psi_cimjp = (psi_old(i, j + 1) + psi_old(i - 1, j + 1) + psi_old(i - 1, j) + psi_old(i, j)) / 4;
Psi_cimjm = (psi_old(i, j) + psi_old(i - 1, j) + psi_old(i - 1, j - 1) + psi_old(i, j - 1)) / 4;
// Calculating right edge flux for anti-trapping term
g = pow(psi_R, 2) * pow((1 - psi_R), 2);
gprime = 2 * psi_R * (1 - psi_R) * (1 - 2 * psi_R);
HA = Wa * gprime + 30 * g * H_A * (1 / T_R - 1 / Tm_A);
HB = Wb * gprime + 30 * g * H_B * (1 / T_R - 1 / Tm_B);
DERX = (psi_old(i + 1, j) - psi_old(i, j)) / dx;
DERY = (Psi_cipjp - Psi_cipjm) / dx;
DERX_C = (C_old(i + 1, j) - C_old(i, j)) / dx;
Mag2 = pow(DERX, 2) + pow(DERY, 2);
JR = DERX_C + Vm / R * C_R * (1 - C_R) * (HB - HA) * DERX;
JR_a = 0;
if (Mag2 > eps) {
JR_a = a * lambda * (1 - partition) * 2 * C_R / (1 + partition - (1 - partition) * psi_R) * dpsi_dt_R * DERX / sqrt(Mag2);
}
// Calculating left edge flux for anti-trapping term
g = pow(psi_L, 2) * pow((1 - psi_L), 2);
gprime = 2 * psi_L * (1 - psi_L) * (1 - 2 * psi_L);
HA = Wa * gprime + 30 * g * H_A * (1 / T_L - 1 / Tm_A);
HB = Wb * gprime + 30 * g * H_B * (1 / T_L - 1 / Tm_B);
DERX = (psi_old(i, j) - psi_old(i - 1, j)) / dx;
DERY = (Psi_cimjp - Psi_cimjm) / dx;
DERX_C = (C_old(i, j) - C_old(i - 1, j)) / dx;
Mag2 = pow(DERX, 2) + pow(DERY, 2);
JL = DERX_C + Vm / R * C_L * (1 - C_L) * (HB - HA) * DERX;
JL_a = 0;
if (Mag2 > eps) {
JL_a = a * lambda * (1 - partition) * 2 * C_L / (1 + partition - (1 - partition) * psi_L) * dpsi_dt_L * DERX / sqrt(Mag2);
}
// Calculating top edge flux for anti-trapping term
g = pow(psi_T, 2) * pow((1 - psi_T), 2);
gprime = 2 * psi_T * (1 - psi_T) * (1 - 2 * psi_T);
HA = Wa * gprime + 30 * g * H_A * (1 / T_T - 1 / Tm_A);
HB = Wb * gprime + 30 * g * H_B * (1 / T_T - 1 / Tm_B);
DERY = (psi_old(i, j + 1) - psi_old(i, j)) / dx;
DERX = (Psi_cipjp - Psi_cimjp) / dx;
DERY_C = (C_old(i, j + 1) - C_old(i, j)) / dx;
Mag2 = pow(DERX, 2) + pow(DERY, 2);
JT = DERY_C + Vm / R * C_T * (1 - C_T) * (HB - HA) * DERY;
JT_a = 0;
if (Mag2 > eps) {
JT_a = a * lambda * (1 - partition) * 2 * C_T / (1 + partition - (1 - partition) * psi_T) * dpsi_dt_T * DERY / sqrt(Mag2);
}
// Calculating bottom edge flux for anti-trapping term
g = pow(psi_B, 2) * pow((1 - psi_B), 2);
gprime = 2 * psi_B * (1 - psi_B) * (1 - 2 * psi_B);
HA = Wa * gprime + 30 * g * H_A * (1 / T_B - 1 / Tm_A);
HB = Wb * gprime + 30 * g * H_B * (1 / T_B - 1 / Tm_B);
DERY = (psi_old(i, j) - psi_old(i, j - 1)) / dx;
DERX = (Psi_cipjm - Psi_cimjm) / dx;
DERY_C = (C_old(i, j) - C_old(i, j - 1)) / dx;
Mag2 = pow(DERX, 2) + pow(DERY, 2);
JB = DERY_C + Vm / R * C_B * (1 - C_B) * (HB - HA) * DERY;
JB_a = 0;
if (Mag2 > eps) {
JB_a = a * lambda * (1 - partition) * 2 * C_B / (1 + partition - (1 - partition) * psi_B) * dpsi_dt_B * DERY / sqrt(Mag2);
}
// Update the concentration C
DR = D_s + pow(psi_R, 3) * (10 - 15 * psi_R + 6 * pow(psi_R, 2)) * (D_l - D_s);
DL = D_s + pow(psi_L, 3) * (10 - 15 * psi_L + 6 * pow(psi_L, 2)) * (D_l - D_s);
DT = D_s + pow(psi_T, 3) * (10 - 15 * psi_T + 6 * pow(psi_T, 2)) * (D_l - D_s);
DB = D_s + pow(psi_B, 3) * (10 - 15 * psi_B + 6 * pow(psi_B, 2)) * (D_l - D_s);
C_new(i, j) = C_old(i, j) + dt / dx * (DR * (JR + JR_a) - DL * (JL + JL_a) + DT * (JT + JT_a) - DB * (JB + JB_a));
}
}
for(int j=0;j<Nx+1;++j){
C_new(Nx + 1, j) = C_new(Nx - 1, j);
C_new(0, j) = C_new(2, j);
C_new(j, Ny + 1) = C_new(j, Ny - 1);
C_new(j, 0) = C_new(j, 2);
psi_new(Nx + 1, j) = psi_new(Nx - 1, j);
psi_new(0, j) = psi_new(2, j);
psi_new(j, Ny + 1) = psi_new(j, Ny - 1);
psi_new(j, 0) = psi_new(j, 2);
}
//UPDATING THE TEMPERATURE EQUATION!//
//Finte volume with explicit Euler
// KR = (1 - C_R) * K_A + C_R * K_B;
// KL = (1 - C_L) * K_A + C_L * K_B;
// KT = (1 - C_T) * K_A + C_T * K_B;
// KB = (1 - C_B) * K_A + C_B * K_B;
//
// //calculating right edge flux for the temperature field
//
// DERX_T = (T_old(i + 1, j) - T_old(i, j)) / dx;
// JR = KR * DERX_T;
//
// //calculating left edge flux for the temperature field
//
// DERX_T = (T_old(i, j) - T_old(i - 1, j)) / dx;
// JL = KL * DERX_T;
//
// //calculating top edge flux for the temperature field
//
// DERY_T = (T_old(i, j + 1) - T_old(i, j)) / dx;
// JT = KT * DERY_T;
//
// //calculating bottom edge flux for the temperature field
//
// DERY_T = (T_old(i, j) - T_old(i, j - 1)) / dx;
// JB = KB * DERY_T;
//
// cp = (1 - C_old(i, j)) * cp_A + C_old(i, j) * cp_B;
// Htilde = (1 - C_old(i, j)) * H_A + C_old(i, j) * H_B;
// g = pow(psi_old(i, j), 2) * pow((1 - psi_old(i, j)), 2);
//
//
// T_new(i,j) = dt / (cp * dx * dx) * (dx * (JR - JL + JT - JB) - dx * dx * 30 * g * Htilde * dpsi_dt(i, j)) + T_old(i, j);
//Finite difference
if(iter<4){
for (int i = 1; i <= Nx; ++i) {
for (int j = 1; j <= Ny; ++j) {
K=(1-C_new(i,j))*K_A+C_new(i,j)*K_B;
DERX_C=(C_new(i+1,j)-C_new(i,j))/dx;
DERY_C=(C_new(i,j+1)-C_new(i,j))/dx;
DERX_T=(T_old(i+1,j)+k_0(i+1,j)-T_old(i,j)+k_0(i,j))/dx;
DERY_T=(T_old(i,j+1)+k_0(i,j+1)-T_old(i,j)+k_0(i,j))/dx;
cp = (1 - C_new(i, j)) * cp_A + C_new(i, j) * cp_B;
Htilde = (1 - C_new(i, j)) * H_A + C_new(i, j) * H_B;
g = pow(psi_new(i, j), 2) * pow((1 - psi_new(i, j)), 2);
Nabla=1/pow(dx,2)*(0.5*(T_old(i+1,j)+k_0(i+1,j)+T_old(i-1,j)+k_0(i-1,j)+T_old(i,j+1)+k_0(i,j+1)+T_old(i,j-1)+k_0(i,j-1))+0.25*(T_old(i+1,j+1)+k_0(i+1,j+1)+T_old(i+1,j-1)+k_0(i+1,j-1)
+T_old(i-1,j+1)+k_0(i-1,j+1)+T_old(i-1,j-1)+k_0(i-1,j+1))-3*T_old(i,j)+k_0(i,j));
if(iter==0){
k1=1/cp*((K_B-K_A)*(DERX_C*DERX_T+DERY_C*DERY_T)+K*Nabla-30*g*Htilde*dpsi_dt(i,j));
k_1(i,j)=k1;
}else
if(iter==1){
k2=1/cp*((K_B-K_A)*(DERX_C*DERX_T+DERY_C*DERY_T)+K*Nabla-30*g*Htilde*dpsi_dt(i,j));
k_2(i,j)=k2;
}else
if(iter==2){
k3=1/cp*((K_B-K_A)*(DERX_C*DERX_T+DERY_C*DERY_T)+K*Nabla-30*g*Htilde*dpsi_dt(i,j));
k_3(i,j)=k3;
}else
if(iter==3){
k4=1/cp*((K_B-K_A)*(DERX_C*DERX_T+DERY_C*DERY_T)+K*Nabla-30*g*Htilde*dpsi_dt(i,j));
k_4(i,j)=k4;
//std::cout<<"k_1="<<k_1<<"\n"<<"k_2="<<k_2<<"\n"<<"k_3="<<k_3<<"\n"<<"k_4="<<k_4<<std::endl;
T_new(i,j)=T_old(i,j)+dt*(b1*k_1(i,j)+b2*k_2(i,j)+b3*k_3(i,j)+b4*k_4(i,j));
}
}
}
}
iter++;
}
"Is it possible to parallelize my code in a simple manner?"
你的代码并不简单,所以没有人能在不投入太多时间的情况下回答这个问题。
"All my variables are declared before the code you see here."
我发现使用 OpenMP 最容易做到与此相反的事情。每当您在 OpenMP 中有一段并行代码时,您确实需要考虑其中的所有内容同时发生多次。因此,如果您声明一个变量,那么该变量现在有 n 个副本。如果您尝试写入在并行部分之外声明的变量,则 n 个不同的东西会同时尝试写入该资源。
如果您想让 OpenMP 变得简单,请尽可能多地保持线程本地化。 (也就是在该循环内声明您将在循环中使用的所有变量)。如果这不符合您的需要,请研究如何使用 OpenMP 的 reduction
子句创建变量的本地副本,这些副本将在并行部分的末尾组合(通过加法、乘法等)以创建一个代表所有线程结果的最终值。作为最后的手段,在并行部分引用外部资源,但您可能需要在代码中添加 critical
或 atomic
注释,以确保一次只有一个线程在执行该部分代码。
为了操作大型数组,可以更容易地将中间结果存储在为并行区域内的每个线程分配的子数组中,然后在末尾有一段最终的单线程代码 运行s 通过每个子数组并处理将结果适当地存储回大数组。
与所有事情一样,确保您使用某种计时机制来确保您的更改实际上加快了速度!我建议 std::chrono::steady_clock 只要您计时的代码区域花费超过几毫秒到 运行。
我真的帮不了你,因为你遗漏了关键信息,比如算法的作用和所有变量是什么,但我可以给你一般的并行化建议。
首先,您需要使用性能分析器找出代码的哪些部分最耗时。我敢打赌这是 for (int i = 1; i <= Nx; ++i)
for (int j = 1; j <= Ny; ++j)
部分,但我们需要确定。假设您进行了分析,我是对的。下一步是什么?
现在您已经在外部作用域中声明了所有变量。 你不能这样做。 你修改的每个 variable/pointer 都需要在并行化 function/loop 的范围内声明。假设我对 for 循环是关键部分的看法是正确的,我是说您的代码应该看起来更像这样:
for (int i = 1; i <= Nx; ++i) {
for (int j = 1; j <= Ny; ++j) {
// Move all the declarations to local scope-- if this loop runs in parallel, each loop then has it's own variables to work with.
int Psi_cipjp = (psi_old(i + 1, j + 1) + psi_old(i, j + 1) + psi_old(i, j) + psi_old(i + 1, j)) / 4;
int Psi_cipjm = (psi_old(i + 1, j) + psi_old(i, j) + psi_old(i, j - 1) + psi_old(i + 1, j - 1)) / 4;
int Psi_cimjp = (psi_old(i, j + 1) + psi_old(i - 1, j + 1) + psi_old(i - 1, j) + psi_old(i, j)) / 4;
int Psi_cimjm = (psi_old(i, j) + psi_old(i - 1, j) + psi_old(i - 1, j - 1) + psi_old(i, j - 1)) / 4;
int DERX = (psi_old(i + 1, j) - psi_old(i, j)) / dx;
int DERY = (Psi_cipjp - Psi_cipjm) / dx;
/* and so on... */
}
}
但是您的算法似乎是一个复杂的算法,因此如果您发现您必须认真地重新考虑实现以并行化它,我不会感到惊讶。我建议您在解决这个问题之前尝试一些更简单的并行化问题。
这是我第一次尝试并行化我的代码。 这种尝试似乎会导致 "race" 并且代码会产生无意义的值。 是否有可能以一种简单的方式并行化我的代码? 我知道代码块很长,对此感到抱歉。 我的所有变量都在您在此处看到的代码之前声明。 非常感谢您对此的帮助!
int numthreads=2;
omp_set_num_threads(numthreads);
#pragma omp parallel for
for (int t = 1; t <= tmax; ++t) {
iter=0;
while(iter<5){
switch(iter){
case 1:
for(int j=0;j<Nx+1;++j){
k_1(Nx + 1, j) = k_1(Nx - 1, j);
k_1(0, j) = k_1(2, j);
k_1(j, Ny + 1) = k_1(j, Ny - 1);
k_1(j, 0) = C_new(j, 2);
}
k_0=a2*dt*k_1;
break;
case 2:
for(int j=0;j<Nx+1;++j){
k_2(Nx + 1, j) = k_2(Nx - 1, j);
k_2(0, j) = k_2(2, j);
k_2(j, Ny + 1) = k_2(j, Ny - 1);
k_2(j, 0) = C_new(j, 2);
}
k_0=a3*dt*k_2;
break;
case 3:
for(int j=0;j<Nx+1;++j){
k_3(Nx + 1, j) = k_3(Nx - 1, j);
k_3(0, j) = k_3(2, j);
k_3(j, Ny + 1) = k_3(j, Ny - 1);
k_3(j, 0) = k_3(j, 2);
}
k_0=a4*dt*k_3;
break;
case 4:
k_0.fill(0);
break;
}
for (int i = 1; i <= Nx; ++i) {
for (int j = 1; j <= Ny; ++j) {
// Computing ghost nodes values around (i,j)
//Order parameter
Psi_cipjp = (psi_old(i + 1, j + 1) + psi_old(i, j + 1) + psi_old(i, j) + psi_old(i + 1, j)) / 4;
Psi_cipjm = (psi_old(i + 1, j) + psi_old(i, j) + psi_old(i, j - 1) + psi_old(i + 1, j - 1)) / 4;
Psi_cimjp = (psi_old(i, j + 1) + psi_old(i - 1, j + 1) + psi_old(i - 1, j) + psi_old(i, j)) / 4;
Psi_cimjm = (psi_old(i, j) + psi_old(i - 1, j) + psi_old(i - 1, j - 1) + psi_old(i, j - 1)) / 4;
// UPDATING THE ORDER PARAMETER PSI !//
// Calculating right edge flux JR
DERX = (psi_old(i + 1, j) - psi_old(i, j)) / dx;
DERY = (Psi_cipjp - Psi_cipjm) / dx;
// Setting anisotropy parameters
aniso(DERX, DERY, a_s, a_12, eps, epsilon);
JR = Atheta * (Atheta * DERX + Aptheta * DERY);
// Calculating left edge flux JL
DERX = (psi_old(i, j) - psi_old(i - 1, j)) / dx;
DERY = (Psi_cimjp - Psi_cimjm) / dx;
// Setting anisotropy parameters
aniso(DERX, DERY, a_s, a_12, eps, epsilon);
JL = Atheta * (Atheta * DERX + Aptheta * DERY);
// Calculating top edge flux JT
DERY = (psi_old(i, j + 1) - psi_old(i, j)) / dx;
DERX = (Psi_cipjp - Psi_cimjp) / dx;
// Setting anisotropy parameters
aniso(DERX, DERY, a_s, a_12, eps, epsilon);
JT = Atheta * (Atheta * DERY - Aptheta * DERX);
// Calculating bottom edge flux JB
DERY = (psi_old(i, j) - psi_old(i, j - 1)) / dx;
DERX = (Psi_cipjm - Psi_cimjm) / dx;
// Setting anisotropy parameters
aniso(DERX, DERY, a_s, a_12, eps, epsilon);
JB = Atheta * (Atheta * DERY - Aptheta * DERX);
// Update psi
M = (1 - C_old(i, j)) * Ma + C_old(i, j) * Mb;
g = pow(psi_old(i, j), 2) * pow((1 - psi_old(i, j)), 2);
gprime = 2 * psi_old(i, j) * (1 - psi_old(i, j)) * (1 - 2 * psi_old(i, j));
HA = Wa * gprime + 30 * g * H_A * (1 /( T_old(i, j)+k_0(i,j)) - 1 / Tm_A);
HB = Wb * gprime + 30 * g * H_B * (1 / (T_old(i, j)+k_0(i,j)) - 1 / Tm_B);
H = (1 - C_old(i, j)) * HA + C_old(i, j) * HB;
rand=distr(gen);
Noise=M*A_noise*rand*16*g*((1-C_old(i,j))*HA+C_old(i,j)*HB);
dpsi=(dt / dx) * ((JR - JL + JT - JB) * M * Epsilon2 - dx * M * H-dx*Noise);
psi_new(i, j) = psi_old(i, j) + dpsi;
dpsi_dt(i, j) = dpsi/ dt;
//std::cout<<"dpsi_dt="<<dpsi_dt(i,j)<<std::endl;
// UPDATING THE CONCENTRATION FIELD ! //
//Evaluating field values on finite volume boundary
dpsi_dt_R = (dpsi_dt(i + 1, j) + dpsi_dt(i, j)) / 2;
dpsi_dt_L = (dpsi_dt(i, j) + dpsi_dt(i - 1, j)) / 2;
dpsi_dt_T = (dpsi_dt(i, j + 1) + dpsi_dt(i, j)) / 2;
dpsi_dt_B = (dpsi_dt(i, j) + dpsi_dt(i, j - 1)) / 2;
psi_R = (psi_old(i + 1, j) + psi_old(i, j)) / 2;
psi_L = (psi_old(i, j) + psi_old(i - 1, j)) / 2;
psi_T = (psi_old(i, j + 1) + psi_old(i, j)) / 2;
psi_B = (psi_old(i, j) + psi_old(i, j - 1)) / 2;
C_R = (C_old(i + 1, j) + C_old(i, j)) / 2;
C_L = (C_old(i, j) + C_old(i - 1, j)) / 2;
C_T = (C_old(i, j + 1) + C_old(i, j)) / 2;
C_B = (C_old(i, j) + C_old(i, j - 1)) / 2;
T_R = (T_old(i + 1, j)+k_0(i+1,j) + T_old(i, j)+k_0(i,j)) / 2;
T_L = (T_old(i, j)+k_0(i,j) + T_old(i - 1, j)+k_0(i-1,j)) / 2;
T_T = (T_old(i, j + 1)+k_0(i,j+1) + T_old(i, j)+k_0(i,j)) / 2;
T_B = (T_old(i, j)+k_0(i,j) + T_old(i, j - 1)+k_0(i,j-1)) / 2;
Psi_cipjp = (psi_old(i + 1, j + 1) + psi_old(i, j + 1) + psi_old(i, j) + psi_old(i + 1, j)) / 4;
Psi_cipjm = (psi_old(i + 1, j) + psi_old(i, j) + psi_old(i, j - 1) + psi_old(i + 1, j - 1)) / 4;
Psi_cimjp = (psi_old(i, j + 1) + psi_old(i - 1, j + 1) + psi_old(i - 1, j) + psi_old(i, j)) / 4;
Psi_cimjm = (psi_old(i, j) + psi_old(i - 1, j) + psi_old(i - 1, j - 1) + psi_old(i, j - 1)) / 4;
// Calculating right edge flux for anti-trapping term
g = pow(psi_R, 2) * pow((1 - psi_R), 2);
gprime = 2 * psi_R * (1 - psi_R) * (1 - 2 * psi_R);
HA = Wa * gprime + 30 * g * H_A * (1 / T_R - 1 / Tm_A);
HB = Wb * gprime + 30 * g * H_B * (1 / T_R - 1 / Tm_B);
DERX = (psi_old(i + 1, j) - psi_old(i, j)) / dx;
DERY = (Psi_cipjp - Psi_cipjm) / dx;
DERX_C = (C_old(i + 1, j) - C_old(i, j)) / dx;
Mag2 = pow(DERX, 2) + pow(DERY, 2);
JR = DERX_C + Vm / R * C_R * (1 - C_R) * (HB - HA) * DERX;
JR_a = 0;
if (Mag2 > eps) {
JR_a = a * lambda * (1 - partition) * 2 * C_R / (1 + partition - (1 - partition) * psi_R) * dpsi_dt_R * DERX / sqrt(Mag2);
}
// Calculating left edge flux for anti-trapping term
g = pow(psi_L, 2) * pow((1 - psi_L), 2);
gprime = 2 * psi_L * (1 - psi_L) * (1 - 2 * psi_L);
HA = Wa * gprime + 30 * g * H_A * (1 / T_L - 1 / Tm_A);
HB = Wb * gprime + 30 * g * H_B * (1 / T_L - 1 / Tm_B);
DERX = (psi_old(i, j) - psi_old(i - 1, j)) / dx;
DERY = (Psi_cimjp - Psi_cimjm) / dx;
DERX_C = (C_old(i, j) - C_old(i - 1, j)) / dx;
Mag2 = pow(DERX, 2) + pow(DERY, 2);
JL = DERX_C + Vm / R * C_L * (1 - C_L) * (HB - HA) * DERX;
JL_a = 0;
if (Mag2 > eps) {
JL_a = a * lambda * (1 - partition) * 2 * C_L / (1 + partition - (1 - partition) * psi_L) * dpsi_dt_L * DERX / sqrt(Mag2);
}
// Calculating top edge flux for anti-trapping term
g = pow(psi_T, 2) * pow((1 - psi_T), 2);
gprime = 2 * psi_T * (1 - psi_T) * (1 - 2 * psi_T);
HA = Wa * gprime + 30 * g * H_A * (1 / T_T - 1 / Tm_A);
HB = Wb * gprime + 30 * g * H_B * (1 / T_T - 1 / Tm_B);
DERY = (psi_old(i, j + 1) - psi_old(i, j)) / dx;
DERX = (Psi_cipjp - Psi_cimjp) / dx;
DERY_C = (C_old(i, j + 1) - C_old(i, j)) / dx;
Mag2 = pow(DERX, 2) + pow(DERY, 2);
JT = DERY_C + Vm / R * C_T * (1 - C_T) * (HB - HA) * DERY;
JT_a = 0;
if (Mag2 > eps) {
JT_a = a * lambda * (1 - partition) * 2 * C_T / (1 + partition - (1 - partition) * psi_T) * dpsi_dt_T * DERY / sqrt(Mag2);
}
// Calculating bottom edge flux for anti-trapping term
g = pow(psi_B, 2) * pow((1 - psi_B), 2);
gprime = 2 * psi_B * (1 - psi_B) * (1 - 2 * psi_B);
HA = Wa * gprime + 30 * g * H_A * (1 / T_B - 1 / Tm_A);
HB = Wb * gprime + 30 * g * H_B * (1 / T_B - 1 / Tm_B);
DERY = (psi_old(i, j) - psi_old(i, j - 1)) / dx;
DERX = (Psi_cipjm - Psi_cimjm) / dx;
DERY_C = (C_old(i, j) - C_old(i, j - 1)) / dx;
Mag2 = pow(DERX, 2) + pow(DERY, 2);
JB = DERY_C + Vm / R * C_B * (1 - C_B) * (HB - HA) * DERY;
JB_a = 0;
if (Mag2 > eps) {
JB_a = a * lambda * (1 - partition) * 2 * C_B / (1 + partition - (1 - partition) * psi_B) * dpsi_dt_B * DERY / sqrt(Mag2);
}
// Update the concentration C
DR = D_s + pow(psi_R, 3) * (10 - 15 * psi_R + 6 * pow(psi_R, 2)) * (D_l - D_s);
DL = D_s + pow(psi_L, 3) * (10 - 15 * psi_L + 6 * pow(psi_L, 2)) * (D_l - D_s);
DT = D_s + pow(psi_T, 3) * (10 - 15 * psi_T + 6 * pow(psi_T, 2)) * (D_l - D_s);
DB = D_s + pow(psi_B, 3) * (10 - 15 * psi_B + 6 * pow(psi_B, 2)) * (D_l - D_s);
C_new(i, j) = C_old(i, j) + dt / dx * (DR * (JR + JR_a) - DL * (JL + JL_a) + DT * (JT + JT_a) - DB * (JB + JB_a));
}
}
for(int j=0;j<Nx+1;++j){
C_new(Nx + 1, j) = C_new(Nx - 1, j);
C_new(0, j) = C_new(2, j);
C_new(j, Ny + 1) = C_new(j, Ny - 1);
C_new(j, 0) = C_new(j, 2);
psi_new(Nx + 1, j) = psi_new(Nx - 1, j);
psi_new(0, j) = psi_new(2, j);
psi_new(j, Ny + 1) = psi_new(j, Ny - 1);
psi_new(j, 0) = psi_new(j, 2);
}
//UPDATING THE TEMPERATURE EQUATION!//
//Finte volume with explicit Euler
// KR = (1 - C_R) * K_A + C_R * K_B;
// KL = (1 - C_L) * K_A + C_L * K_B;
// KT = (1 - C_T) * K_A + C_T * K_B;
// KB = (1 - C_B) * K_A + C_B * K_B;
//
// //calculating right edge flux for the temperature field
//
// DERX_T = (T_old(i + 1, j) - T_old(i, j)) / dx;
// JR = KR * DERX_T;
//
// //calculating left edge flux for the temperature field
//
// DERX_T = (T_old(i, j) - T_old(i - 1, j)) / dx;
// JL = KL * DERX_T;
//
// //calculating top edge flux for the temperature field
//
// DERY_T = (T_old(i, j + 1) - T_old(i, j)) / dx;
// JT = KT * DERY_T;
//
// //calculating bottom edge flux for the temperature field
//
// DERY_T = (T_old(i, j) - T_old(i, j - 1)) / dx;
// JB = KB * DERY_T;
//
// cp = (1 - C_old(i, j)) * cp_A + C_old(i, j) * cp_B;
// Htilde = (1 - C_old(i, j)) * H_A + C_old(i, j) * H_B;
// g = pow(psi_old(i, j), 2) * pow((1 - psi_old(i, j)), 2);
//
//
// T_new(i,j) = dt / (cp * dx * dx) * (dx * (JR - JL + JT - JB) - dx * dx * 30 * g * Htilde * dpsi_dt(i, j)) + T_old(i, j);
//Finite difference
if(iter<4){
for (int i = 1; i <= Nx; ++i) {
for (int j = 1; j <= Ny; ++j) {
K=(1-C_new(i,j))*K_A+C_new(i,j)*K_B;
DERX_C=(C_new(i+1,j)-C_new(i,j))/dx;
DERY_C=(C_new(i,j+1)-C_new(i,j))/dx;
DERX_T=(T_old(i+1,j)+k_0(i+1,j)-T_old(i,j)+k_0(i,j))/dx;
DERY_T=(T_old(i,j+1)+k_0(i,j+1)-T_old(i,j)+k_0(i,j))/dx;
cp = (1 - C_new(i, j)) * cp_A + C_new(i, j) * cp_B;
Htilde = (1 - C_new(i, j)) * H_A + C_new(i, j) * H_B;
g = pow(psi_new(i, j), 2) * pow((1 - psi_new(i, j)), 2);
Nabla=1/pow(dx,2)*(0.5*(T_old(i+1,j)+k_0(i+1,j)+T_old(i-1,j)+k_0(i-1,j)+T_old(i,j+1)+k_0(i,j+1)+T_old(i,j-1)+k_0(i,j-1))+0.25*(T_old(i+1,j+1)+k_0(i+1,j+1)+T_old(i+1,j-1)+k_0(i+1,j-1)
+T_old(i-1,j+1)+k_0(i-1,j+1)+T_old(i-1,j-1)+k_0(i-1,j+1))-3*T_old(i,j)+k_0(i,j));
if(iter==0){
k1=1/cp*((K_B-K_A)*(DERX_C*DERX_T+DERY_C*DERY_T)+K*Nabla-30*g*Htilde*dpsi_dt(i,j));
k_1(i,j)=k1;
}else
if(iter==1){
k2=1/cp*((K_B-K_A)*(DERX_C*DERX_T+DERY_C*DERY_T)+K*Nabla-30*g*Htilde*dpsi_dt(i,j));
k_2(i,j)=k2;
}else
if(iter==2){
k3=1/cp*((K_B-K_A)*(DERX_C*DERX_T+DERY_C*DERY_T)+K*Nabla-30*g*Htilde*dpsi_dt(i,j));
k_3(i,j)=k3;
}else
if(iter==3){
k4=1/cp*((K_B-K_A)*(DERX_C*DERX_T+DERY_C*DERY_T)+K*Nabla-30*g*Htilde*dpsi_dt(i,j));
k_4(i,j)=k4;
//std::cout<<"k_1="<<k_1<<"\n"<<"k_2="<<k_2<<"\n"<<"k_3="<<k_3<<"\n"<<"k_4="<<k_4<<std::endl;
T_new(i,j)=T_old(i,j)+dt*(b1*k_1(i,j)+b2*k_2(i,j)+b3*k_3(i,j)+b4*k_4(i,j));
}
}
}
}
iter++;
}
"Is it possible to parallelize my code in a simple manner?"
你的代码并不简单,所以没有人能在不投入太多时间的情况下回答这个问题。
"All my variables are declared before the code you see here."
我发现使用 OpenMP 最容易做到与此相反的事情。每当您在 OpenMP 中有一段并行代码时,您确实需要考虑其中的所有内容同时发生多次。因此,如果您声明一个变量,那么该变量现在有 n 个副本。如果您尝试写入在并行部分之外声明的变量,则 n 个不同的东西会同时尝试写入该资源。
如果您想让 OpenMP 变得简单,请尽可能多地保持线程本地化。 (也就是在该循环内声明您将在循环中使用的所有变量)。如果这不符合您的需要,请研究如何使用 OpenMP 的 reduction
子句创建变量的本地副本,这些副本将在并行部分的末尾组合(通过加法、乘法等)以创建一个代表所有线程结果的最终值。作为最后的手段,在并行部分引用外部资源,但您可能需要在代码中添加 critical
或 atomic
注释,以确保一次只有一个线程在执行该部分代码。
为了操作大型数组,可以更容易地将中间结果存储在为并行区域内的每个线程分配的子数组中,然后在末尾有一段最终的单线程代码 运行s 通过每个子数组并处理将结果适当地存储回大数组。
与所有事情一样,确保您使用某种计时机制来确保您的更改实际上加快了速度!我建议 std::chrono::steady_clock 只要您计时的代码区域花费超过几毫秒到 运行。
我真的帮不了你,因为你遗漏了关键信息,比如算法的作用和所有变量是什么,但我可以给你一般的并行化建议。
首先,您需要使用性能分析器找出代码的哪些部分最耗时。我敢打赌这是 for (int i = 1; i <= Nx; ++i)
for (int j = 1; j <= Ny; ++j)
部分,但我们需要确定。假设您进行了分析,我是对的。下一步是什么?
现在您已经在外部作用域中声明了所有变量。 你不能这样做。 你修改的每个 variable/pointer 都需要在并行化 function/loop 的范围内声明。假设我对 for 循环是关键部分的看法是正确的,我是说您的代码应该看起来更像这样:
for (int i = 1; i <= Nx; ++i) {
for (int j = 1; j <= Ny; ++j) {
// Move all the declarations to local scope-- if this loop runs in parallel, each loop then has it's own variables to work with.
int Psi_cipjp = (psi_old(i + 1, j + 1) + psi_old(i, j + 1) + psi_old(i, j) + psi_old(i + 1, j)) / 4;
int Psi_cipjm = (psi_old(i + 1, j) + psi_old(i, j) + psi_old(i, j - 1) + psi_old(i + 1, j - 1)) / 4;
int Psi_cimjp = (psi_old(i, j + 1) + psi_old(i - 1, j + 1) + psi_old(i - 1, j) + psi_old(i, j)) / 4;
int Psi_cimjm = (psi_old(i, j) + psi_old(i - 1, j) + psi_old(i - 1, j - 1) + psi_old(i, j - 1)) / 4;
int DERX = (psi_old(i + 1, j) - psi_old(i, j)) / dx;
int DERY = (Psi_cipjp - Psi_cipjm) / dx;
/* and so on... */
}
}
但是您的算法似乎是一个复杂的算法,因此如果您发现您必须认真地重新考虑实现以并行化它,我不会感到惊讶。我建议您在解决这个问题之前尝试一些更简单的并行化问题。