卷积 - 偶数和奇数大小的反卷积
Convolution - Deconvolution for even and odd size
我有两个不同大小的张量要放入网络中。
C = nn.Conv1d(1, 1, kernel_size=1, stride=2)
TC = nn.ConvTranspose1d(1, 1, kernel_size=1, stride=2)
a = torch.rand(1, 1, 100)
b = torch.rand(1, 1, 101)
a_out, b_out = TC(C(a)), TC(C(b))
结果是
a_out = torch.size([1, 1, 99]) # What I want is [1, 1, 100]
b_out = torch.size([1, 1, 101])
有什么方法可以解决这个问题吗?
我需要你的帮助。
谢谢
这是符合 documentation 的预期行为。当检测到甚至输入长度以获得与输入相同的长度时,可以使用填充。
像这样
class PadEven(nn.Module):
def __init__(self, conv, deconv, pad_value=0, padding=(0, 1)):
super().__init__()
self.conv = conv
self.deconv = deconv
self.pad = nn.ConstantPad1d(padding=padding, value=pad_value)
def forward(self, x):
nd = x.size(-1)
x = self.deconv(self.conv(x))
if nd % 2 == 0:
x = self.pad(x)
return x
C = nn.Conv1d(1, 1, kernel_size=1, stride=2)
TC = nn.ConvTranspose1d(1, 1, kernel_size=1, stride=2)
P = PadEven(C, TC)
a = torch.rand(1, 1, 100)
b = torch.rand(1, 1, 101)
a_out, b_out = P(a), P(b)
我有两个不同大小的张量要放入网络中。
C = nn.Conv1d(1, 1, kernel_size=1, stride=2)
TC = nn.ConvTranspose1d(1, 1, kernel_size=1, stride=2)
a = torch.rand(1, 1, 100)
b = torch.rand(1, 1, 101)
a_out, b_out = TC(C(a)), TC(C(b))
结果是
a_out = torch.size([1, 1, 99]) # What I want is [1, 1, 100]
b_out = torch.size([1, 1, 101])
有什么方法可以解决这个问题吗?
我需要你的帮助。
谢谢
这是符合 documentation 的预期行为。当检测到甚至输入长度以获得与输入相同的长度时,可以使用填充。
像这样
class PadEven(nn.Module):
def __init__(self, conv, deconv, pad_value=0, padding=(0, 1)):
super().__init__()
self.conv = conv
self.deconv = deconv
self.pad = nn.ConstantPad1d(padding=padding, value=pad_value)
def forward(self, x):
nd = x.size(-1)
x = self.deconv(self.conv(x))
if nd % 2 == 0:
x = self.pad(x)
return x
C = nn.Conv1d(1, 1, kernel_size=1, stride=2)
TC = nn.ConvTranspose1d(1, 1, kernel_size=1, stride=2)
P = PadEven(C, TC)
a = torch.rand(1, 1, 100)
b = torch.rand(1, 1, 101)
a_out, b_out = P(a), P(b)