pytorch 不保存加载的预训练模型权重及其在最终模型中的部分

pytorch does not save pre-trained model weights loaded and the parts of it in the final model

我目前正在使用我的数据在 CIFAR-10 上开发预训练模型,删除了模型的最终 fc 层并附加了我自己的 fc 层和 softmax。有七个网络,每个网络都与预训练部分相同,并使用附加的 fc 层组合。以下是预训练网络代码:

class Bottleneck(nn.Module):
    def __init__(self, inplanes, expansion=4, growthRate=12, dropRate=0):
        super(Bottleneck, self).__init__()
        planes = expansion * growthRate
        self.bn1 = nn.BatchNorm2d(inplanes)
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, growthRate, kernel_size=3, 
                               padding=1, bias=False)
        self.relu = nn.ReLU(inplace=True)
        self.dropRate = dropRate

        
    def forward(self, x):
        out = self.bn1(x)
        out = self.relu(out)
        out = self.conv1(out)
        out = self.bn2(out)
        out = self.relu(out)
        out = self.conv2(out)
        if self.dropRate > 0:
            out = F.dropout(out, p=self.dropRate, training=self.training)

        out = torch.cat((x, out), 1)

        return out


class BasicBlock(nn.Module):
    def __init__(self, inplanes, expansion=1, growthRate=12, dropRate=0):
        super(BasicBlock, self).__init__()
        planes = expansion * growthRate
        self.bn1 = nn.BatchNorm2d(inplanes)
        self.conv1 = nn.Conv2d(inplanes, growthRate, kernel_size=3, 
                               padding=1, bias=False)
        self.relu = nn.ReLU(inplace=True)
        self.dropRate = dropRate

        
    def forward(self, x):
        out = self.bn1(x)
        out = self.relu(out)
        out = self.conv1(out)
        if self.dropRate > 0:
            out = F.dropout(out, p=self.dropRate, training=self.training)

        out = torch.cat((x, out), 1)

        return out


class Transition(nn.Module):
    def __init__(self, inplanes, outplanes):
        super(Transition, self).__init__()
        self.bn1 = nn.BatchNorm2d(inplanes)
        self.conv1 = nn.Conv2d(inplanes, outplanes, kernel_size=1,
                               bias=False)
        self.relu = nn.ReLU(inplace=True)

        
    def forward(self, x):
        out = self.bn1(x)
        out = self.relu(out)
        out = self.conv1(out)
        out = F.avg_pool2d(out, 2)
        return out


class DenseNet(nn.Module):

    def __init__(self, depth = 22, block = Bottleneck, 
        dropRate = 0, num_classes = 10, growthRate = 12, compressionRate = 2):
        super(DenseNet, self).__init__()

        assert (depth - 4) % 3 == 0, 'depth should be 3n+4'
        n = (depth - 4) / 3 if block == BasicBlock else (depth - 4) // 6

        self.growthRate = growthRate
        self.dropRate = dropRate

        # self.inplanes is a global variable used across multiple
        # helper functions
        self.inplanes = growthRate * 2 
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size = 3, padding = 1,
                               bias = False)
        self.dense1 = self._make_denseblock(block, n)
        self.trans1 = self._make_transition(compressionRate)
        self.dense2 = self._make_denseblock(block, n)
        self.trans2 = self._make_transition(compressionRate)
        self.dense3 = self._make_denseblock(block, n)
        self.bn = nn.BatchNorm2d(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.avgpool = nn.AvgPool2d(8)
        #self.fc = nn.Linear(self.inplanes, num_classes)

        # Weight initialization
#         for m in self.modules():
#             if isinstance(m, nn.Conv2d):
#                 n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
#                 m.weight.data.normal_(0, math.sqrt(2. / n))
#             elif isinstance(m, nn.BatchNorm2d):
#                 m.weight.data.fill_(1)
#                 m.bias.data.zero_()


    def _make_denseblock(self, block, blocks):
        layers = []
        for i in range(blocks):
            # Currently we fix the expansion ratio as the default value
            layers.append(block(self.inplanes, growthRate = self.growthRate, dropRate=self.dropRate))
            self.inplanes += self.growthRate

        return nn.Sequential(*layers)

    def _make_transition(self, compressionRate):
        inplanes = self.inplanes
        outplanes = int(math.floor(self.inplanes // compressionRate))
        self.inplanes = outplanes
        return Transition(inplanes, outplanes)


    def forward(self, x):
        x = self.conv1(x)

        x = self.trans1(self.dense1(x)) 
        x = self.trans2(self.dense2(x)) 
        x = self.dense3(x)
        x = self.bn(x)
        x = self.relu(x)

        x = self.avgpool(x)
        #x = x.view(x.size(0), -1)
        #x = self.fc(x)

        return x
    
    
    def getParams(self, paramName):
        if paramName == 'inplanes':
            return self.inplanes
        elif paramName == 'growthRate':
            return self.growthRate
        elif paramName == 'dropRate':
            return self.dropRate
        
def densenet(**kwargs):
    """
    Constructs a DenseNet model.
    """
    return DenseNet(**kwargs) 

接下来是我的代码:

class Network(nn.Module):
    
    def __init__(self,pretrained_dict, num_classes = 6, num_channels = 7, 
                 expansion = 4, depth = 100, growthRate = 12, dropRate = 0):
        
        super(Network, self).__init__()
        
        self.num_channels = num_channels
        
        # creating 7 channels networks 
        self.channels_dnsnets = []
        
        for ch in range(self.num_channels):
#             print(ch)
            
            d = densenet(depth = depth)
            d_dict = d.state_dict()
            
            # 1. filter out unnecessary keys
            pretrained_dict2 = {k[7:]: v for k, v in pretrained_dict.items() if k[7:] in d_dict}
#             print('d_dict_keys :')
#             print(d_dict.keys())
#             print('*'*50)
#             print('pretrained_dict2.keys:')
#             print(pretrained_dict2.keys())
#             print('*'*50)
            
            # 2. overwrite entries in the existing state dict
            d_dict.update(pretrained_dict2) 
            
            # 3. load the new state dict
            d.load_state_dict(pretrained_dict2)
            
            # freeze the layers of densenet
            for param in d.parameters():
                param.requires_grad = False
                
            self.channels_dnsnets.append(d)
            
        self.inplanes = self.channels_dnsnets[0].getParams(paramName = 'inplanes')
        self.fc = nn.Linear(self.inplanes * self.num_channels, num_classes)
        self.softmax = nn.Softmax(dim = 1)
        
        
    def forward(self, x):
        
        batch_size, channels, ht, wd, in_channels = x.shape
        x = np.reshape(x,(batch_size,channels,in_channels,ht,wd))

        out = []
    
        for num in range(self.num_channels):
            temp_out = self.channels_dnsnets[0](x[:,num,:])
            temp_out = temp_out.view(temp_out.size(0),-1)
#             print(temp_out.shape)
#             print('*' * 50)
            out.append(temp_out)
        
        out = torch.stack(out,dim = 1)
#         print(out.shape)
        out = out.view(out.size(0),-1)
        out = self.fc(out)
        out = self.softmax(out)
        return out 

我将优化器设置为:

optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr = lr, 
                                 betas = (0.9, 0.999), eps = 1e-08, weight_decay = wd, amsgrad = False)
        

但是,每当我保存模型时,densenets 列表及其权重都不会保存,只会保存 fc 层和 softmax 层权重。代码有什么问题吗?我是pytorch的新手。

问题是 self.channels_dnsnets 只是一个 list 而不是 state_dict 的一部分。只有 self.fcself.softmax 会被注册到 Module。最简单的更改是这样定义它:

self.channels_dnsnets = nn.ModuleList()