您好,关于 sklearn.Pipeline 的两个时间序列自定义转换器的问题
Hello, two questions about sklearn.Pipeline with custom transformer for timeseries
我应该如何修改下面的代码以使其工作:
目标,预测 = pipe.fit_predict(df)
编辑:
target, predicted = pipe.fit_transform(df, df)
我的代码:
import numpy as np
import pandas as pd
from sklearn.base import BaseEstimator
from sklearn.base import TransformerMixin
from sklearn.pipeline import Pipeline
np.random.seed(1)
rows,cols = 100,1
data = np.random.randint(100, size = (rows,cols))
tidx = pd.date_range('2019-01-01', periods=rows, freq='20min')
df = pd.DataFrame(data, columns=['num_orders'], index=tidx)
class MakeFeatures(BaseEstimator, TransformerMixin):
def __init__(self, X, y = None, max_lag = None, rolling_mean_day = None, rolling_mean_month = None):
self.X = X.resample('1H').sum()
self.max_lag = max_lag
self.rolling_mean_day = rolling_mean_day
self.rolling_mean_month = rolling_mean_month
def fit(self, X, y = None):
return self
def transform(self, X, y = None):
data = pd.DataFrame(index = self.X.index)
data['num_orders'] = self.X['num_orders']
data['year'] = self.X.index.year
data['month'] = self.X.index.month
data['day'] = self.X.index.day
data['dayofweek'] = self.X.index.dayofweek
data['detrend'] = self.X.shift() - self.X
if self.max_lag:
for lag in range(1, self.max_lag + 1):
data['lag_{}'.format(lag)] = data['detrend'].shift(lag)
if self.rolling_mean_day:
data['rolling_mean_24'] = data.detrend.shift().rolling(self.rolling_mean_day).mean()
if self.rolling_mean_month:
data['rolling_mean_24'] = data['detrend'].shift().rolling(self.rolling_mean_month).mean()
if data['year'].mean() == data['year'][1]:
data = data.drop('year', axis = 1)
data = data.dropna()
y = data.num_orders
data = data.drop('num_orders', 1)
return data, y
pipe = Pipeline([
('features', MakeFeatures(df, df, 2 , 24)),
('scaler', StandardScaler())
])
target, predicted = pipe.fit_transform(df, df) # where ‘Target’ is y - the output from the Class
输出:
ValueError: could not broadcast input array from shape (9,7) into shape (9).
Pipeline 中的每个函数都工作正常。
我可以 运行 MakeFeatures(df, df) 和 StandardScaler().fit_transform(df, df)没问题。
我可以将MakeFeatures(df,df)的乘积插入到StandardScaler中,没有出错。
你不能使用
target, predicted = pipe.fit_predict(df)
使用您定义的管道,因为 fit_predict() 方法只能在估计器也实现了这样的方法的情况下使用。 Reference in documentation
Valid only if the final estimator implements fit_predict.
此外,它只会 return 预测,所以你不能使用 target,predicted =
但应该使用 predicted =
你遇到了错误
ValueError: setting an array element with a sequence.
因为您提供 StandardScaler()
一个 pandas.TimeSeries
。
这是因为在您的方法调用 pipe.fit_predict(df)
中,您只向管道提供了 'X' 而不是 'y'。这对于管道“MakeFeatures”的第一个组件很好,因为它接受 'X' 和 returns 'data' 和 'y',但在管道中 'y' 将不会被使用,因为 'y' 必须在 fit_predict() 调用的开头定义。
它声明 'y' 参数
Training targets. Must fulfill label requirements for all steps of the
pipeline.
因此 'y' 将用作管道所有部分的 'y',但您的未定义,因此 None
.
因此,您当前的管道基本上发生的情况是:
makeF = MakeFeatures(df, 2 , 24)
transformed_df = makeF.fit_transform(df)
sc = StandardScaler()
sc.fit(transformed_df)
并导致 ValueError: setting an array element with a sequence.
所以我建议您像这样更新代码:
import numpy as np
import pandas as pd
from sklearn.base import BaseEstimator
from sklearn.base import TransformerMixin
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
np.random.seed(1)
rows,cols = 100,1
data = np.random.randint(100, size = (rows,cols))
tidx = pd.date_range('2019-01-01', periods=rows, freq='20min')
df = pd.DataFrame(data, columns=['num_orders'], index=tidx)
class MakeFeatures(BaseEstimator, TransformerMixin):
def __init__(self, X, max_lag = None, rolling_mean_day = None, rolling_mean_month = None):
self.X = X.resample('1H').sum()
self.max_lag = max_lag
self.rolling_mean_day = rolling_mean_day
self.rolling_mean_month = rolling_mean_month
def fit(self, X):
return self
def transform(self, X):
data = pd.DataFrame(index = self.X.index)
data['num_orders'] = self.X['num_orders']
data['year'] = self.X.index.year
data['month'] = self.X.index.month
data['day'] = self.X.index.day
data['dayofweek'] = self.X.index.dayofweek
data['detrend'] = self.X.shift() - self.X
if self.max_lag:
for lag in range(1, self.max_lag + 1):
data['lag_{}'.format(lag)] = data['detrend'].shift(lag)
if self.rolling_mean_day:
data['rolling_mean_24'] = data.detrend.shift().rolling(self.rolling_mean_day).mean()
if self.rolling_mean_month:
data['rolling_mean_24'] = data['detrend'].shift().rolling(self.rolling_mean_month).mean()
if data['year'].mean() == data['year'][1]:
data = data.drop('year', axis = 1)
data = data.dropna()
y = data.num_orders
data = data.drop('num_orders', 1)
return data, list(y)
pipe = Pipeline([
('scaler', StandardScaler()),
('Model' , LinearRegression())
])
makeF = MakeFeatures(df, 2 , 24)
makeF.fit(df)
data,y = makeF.transform(df)
pipe.fit(data,y) # where ‘Target’ is y - the output from the Class
然后您可以使用您的管道来预测您的数据并评估性能,例如 r2_score:
from sklearn.metrics import r2_score
predictions = pipe.predict(data)
r2_score(y,predictions)
我应该如何修改下面的代码以使其工作:
目标,预测 = pipe.fit_predict(df)
编辑:
target, predicted = pipe.fit_transform(df, df)
我的代码:
import numpy as np
import pandas as pd
from sklearn.base import BaseEstimator
from sklearn.base import TransformerMixin
from sklearn.pipeline import Pipeline
np.random.seed(1)
rows,cols = 100,1
data = np.random.randint(100, size = (rows,cols))
tidx = pd.date_range('2019-01-01', periods=rows, freq='20min')
df = pd.DataFrame(data, columns=['num_orders'], index=tidx)
class MakeFeatures(BaseEstimator, TransformerMixin):
def __init__(self, X, y = None, max_lag = None, rolling_mean_day = None, rolling_mean_month = None):
self.X = X.resample('1H').sum()
self.max_lag = max_lag
self.rolling_mean_day = rolling_mean_day
self.rolling_mean_month = rolling_mean_month
def fit(self, X, y = None):
return self
def transform(self, X, y = None):
data = pd.DataFrame(index = self.X.index)
data['num_orders'] = self.X['num_orders']
data['year'] = self.X.index.year
data['month'] = self.X.index.month
data['day'] = self.X.index.day
data['dayofweek'] = self.X.index.dayofweek
data['detrend'] = self.X.shift() - self.X
if self.max_lag:
for lag in range(1, self.max_lag + 1):
data['lag_{}'.format(lag)] = data['detrend'].shift(lag)
if self.rolling_mean_day:
data['rolling_mean_24'] = data.detrend.shift().rolling(self.rolling_mean_day).mean()
if self.rolling_mean_month:
data['rolling_mean_24'] = data['detrend'].shift().rolling(self.rolling_mean_month).mean()
if data['year'].mean() == data['year'][1]:
data = data.drop('year', axis = 1)
data = data.dropna()
y = data.num_orders
data = data.drop('num_orders', 1)
return data, y
pipe = Pipeline([
('features', MakeFeatures(df, df, 2 , 24)),
('scaler', StandardScaler())
])
target, predicted = pipe.fit_transform(df, df) # where ‘Target’ is y - the output from the Class
输出:
ValueError: could not broadcast input array from shape (9,7) into shape (9).
Pipeline 中的每个函数都工作正常。
我可以 运行 MakeFeatures(df, df) 和 StandardScaler().fit_transform(df, df)没问题。
我可以将MakeFeatures(df,df)的乘积插入到StandardScaler中,没有出错。
你不能使用
target, predicted = pipe.fit_predict(df)
使用您定义的管道,因为 fit_predict() 方法只能在估计器也实现了这样的方法的情况下使用。 Reference in documentation
Valid only if the final estimator implements fit_predict.
此外,它只会 return 预测,所以你不能使用 target,predicted =
但应该使用 predicted =
你遇到了错误
ValueError: setting an array element with a sequence.
因为您提供 StandardScaler()
一个 pandas.TimeSeries
。
这是因为在您的方法调用 pipe.fit_predict(df)
中,您只向管道提供了 'X' 而不是 'y'。这对于管道“MakeFeatures”的第一个组件很好,因为它接受 'X' 和 returns 'data' 和 'y',但在管道中 'y' 将不会被使用,因为 'y' 必须在 fit_predict() 调用的开头定义。
它声明 'y' 参数
Training targets. Must fulfill label requirements for all steps of the pipeline.
因此 'y' 将用作管道所有部分的 'y',但您的未定义,因此 None
.
因此,您当前的管道基本上发生的情况是:
makeF = MakeFeatures(df, 2 , 24)
transformed_df = makeF.fit_transform(df)
sc = StandardScaler()
sc.fit(transformed_df)
并导致 ValueError: setting an array element with a sequence.
所以我建议您像这样更新代码:
import numpy as np
import pandas as pd
from sklearn.base import BaseEstimator
from sklearn.base import TransformerMixin
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
np.random.seed(1)
rows,cols = 100,1
data = np.random.randint(100, size = (rows,cols))
tidx = pd.date_range('2019-01-01', periods=rows, freq='20min')
df = pd.DataFrame(data, columns=['num_orders'], index=tidx)
class MakeFeatures(BaseEstimator, TransformerMixin):
def __init__(self, X, max_lag = None, rolling_mean_day = None, rolling_mean_month = None):
self.X = X.resample('1H').sum()
self.max_lag = max_lag
self.rolling_mean_day = rolling_mean_day
self.rolling_mean_month = rolling_mean_month
def fit(self, X):
return self
def transform(self, X):
data = pd.DataFrame(index = self.X.index)
data['num_orders'] = self.X['num_orders']
data['year'] = self.X.index.year
data['month'] = self.X.index.month
data['day'] = self.X.index.day
data['dayofweek'] = self.X.index.dayofweek
data['detrend'] = self.X.shift() - self.X
if self.max_lag:
for lag in range(1, self.max_lag + 1):
data['lag_{}'.format(lag)] = data['detrend'].shift(lag)
if self.rolling_mean_day:
data['rolling_mean_24'] = data.detrend.shift().rolling(self.rolling_mean_day).mean()
if self.rolling_mean_month:
data['rolling_mean_24'] = data['detrend'].shift().rolling(self.rolling_mean_month).mean()
if data['year'].mean() == data['year'][1]:
data = data.drop('year', axis = 1)
data = data.dropna()
y = data.num_orders
data = data.drop('num_orders', 1)
return data, list(y)
pipe = Pipeline([
('scaler', StandardScaler()),
('Model' , LinearRegression())
])
makeF = MakeFeatures(df, 2 , 24)
makeF.fit(df)
data,y = makeF.transform(df)
pipe.fit(data,y) # where ‘Target’ is y - the output from the Class
然后您可以使用您的管道来预测您的数据并评估性能,例如 r2_score:
from sklearn.metrics import r2_score
predictions = pipe.predict(data)
r2_score(y,predictions)