替换循环 Numpy 的点积
Replace dot product for loop Numpy
我正在尝试使用像 NumPy 这样更快的东西来替换循环的点积
我对点积进行了研究并且有点理解并且可以通过几种方式让它与玩具数据一起工作,但在实际使用数据框实现它时不是 100%。
我查看了这些和其他 SO 线程,但运气不佳 avoide loop dot product, matlab and dot product subarrays without for loop and multiple numpy dot products without a loop
希望做这样的事情,它与 np 数组中的玩具数字一起使用
u1 =np.array([1,2,3])
u2 =np.array([2,3,4])
v1.dot(v2)
20
u1 =np.array([1,2,3])
u2 =np.array([2,3,4])
(u1 * u2).sum()
20
u1 =np.array([1,2,3])
u2 =np.array([2,3,4])
sum([x1*x2 for x1, x2 in zip (u1, u2)])
20
这是当前工作得到的点积
我想在没有 for 循环的情况下执行此操作
def get_dot_product(self, courseid1, courseid2, unit_vectors):
u1 = unit_vectors[courseid1]
u2 = unit_vectors[courseid2]
dot_product = 0.0
for dimension in u1:
if dimension in u2:
dot_product += u1[dimension] * u2[dimension]
return dot_product
**代码**
#!/usr/bin/env python
# coding: utf-8
class SearchRecommendationSystem:
def __init__(self):
pass
def get_bag_of_words(self, titles_lines):
bag_of_words = {}
for index, row in titles_lines.iterrows():
courseid, course_bag_of_words = self.get_course_bag_of_words(row)
for word in course_bag_of_words:
word = str(word).strip() # added
if word not in bag_of_words:
bag_of_words[word] = course_bag_of_words[word]
else:
bag_of_words[word] += course_bag_of_words[word]
return bag_of_words
def get_course_bag_of_words(self, line):
course_bag_of_words = {}
courseid = line['courseid']
title = line['title'].lower()
description = line['description'].lower()
wordlist = title.split() + description.split()
if len(wordlist) >= 10:
for word in wordlist:
word = str(word).strip() # added
if word not in course_bag_of_words:
course_bag_of_words[word] = 1
else:
course_bag_of_words[word] += 1
return courseid, course_bag_of_words
def get_sorted_results(self, d):
kv_list = d.items()
vk_list = []
for kv in kv_list:
k, v = kv
vk = v, k
vk_list.append(vk)
vk_list.sort()
vk_list.reverse()
k_list = []
for vk in vk_list[:10]:
v, k = vk
k_list.append(k)
return k_list
def get_keywords(self, titles_lines, bag_of_words):
n = sum(bag_of_words.values())
keywords = {}
for index, row in titles_lines.iterrows():
courseid, course_bag_of_words = self.get_course_bag_of_words(row)
term_importance = {}
for word in course_bag_of_words:
word = str(word).strip() # extra
tf_course = (float(course_bag_of_words[word]) / sum(course_bag_of_words.values()))
tf_overall = float(bag_of_words[word]) / n
term_importance[word] = tf_course / tf_overall
keywords[str(courseid)] = self.get_sorted_results(term_importance)
return keywords
def get_inverted_index(self, keywords):
inverted_index = {}
for courseid in keywords:
for keyword in keywords[courseid]:
if keyword not in inverted_index:
keyword = str(keyword).strip() # added
inverted_index[keyword] = []
inverted_index[keyword].append(courseid)
return inverted_index
def get_search_results(self, query_terms, keywords, inverted_index):
search_results = {}
for term in query_terms:
term = str(term).strip()
if term in inverted_index:
for courseid in inverted_index[term]:
if courseid not in search_results:
search_results[courseid] = 0.0
search_results[courseid] += (
1 / float(keywords[courseid].index(term) + 1) *
1 / float(query_terms.index(term) + 1)
)
sorted_results = self.get_sorted_results(search_results)
return sorted_results
def get_titles(self, titles_lines):
titles = {}
for index, row in titles_lines.iterrows():
titles[row['courseid']] = row['title'][:60]
return titles
def get_unit_vectors(self, keywords, categories_lines):
norm = 1.884
cat = {}
subcat = {}
for line in categories_lines[1:]:
courseid_, category, subcategory = line.split('\t')
cat[courseid_] = category.strip()
subcat[courseid_] = subcategory.strip()
unit_vectors = {}
for courseid in keywords:
u = {}
if courseid in cat:
u[cat[courseid]] = 1 / norm
u[subcat[courseid]] = 1 / norm
for keyword in keywords[courseid]:
u[keyword] = (1 / float(keywords[courseid].index(keyword) + 1) / norm)
unit_vectors[courseid] = u
return unit_vectors
def get_dot_product(self, courseid1, courseid2, unit_vectors):
u1 = unit_vectors[courseid1]
u2 = unit_vectors[courseid2]
dot_product = 0.0
for dimension in u1:
if dimension in u2:
dot_product += u1[dimension] * u2[dimension]
return dot_product
def get_recommendation_results(self, seed_courseid, keywords, inverted_index, unit_vectors):
courseids = []
seed_courseid = str(seed_courseid).strip()
for keyword in keywords[seed_courseid]:
for courseid in inverted_index[keyword]:
if courseid not in courseids and courseid != seed_courseid:
courseids.append(courseid)
dot_products = {}
for courseid in courseids:
dot_products[courseid] = self.get_dot_product(seed_courseid, courseid, unit_vectors)
sorted_results = self.get_sorted_results(dot_products)
return sorted_results
def Final(self):
print("Reading Title file.......")
titles_lines = open('s2-titles.txt', encoding="utf8").readlines()
print("Reading Category file.......")
categories_lines = open('s2-categories.tsv', encoding = "utf8").readlines()
print("Getting Supported Functions Data")
bag_of_words = self.get_bag_of_words(titles_lines)
keywords = self.get_keywords(titles_lines, bag_of_words)
inverted_index = self.get_inverted_index(keywords)
titles = self.get_titles(titles_lines)
print("Getting Unit Vectors")
unit_vectors = self.get_unit_vectors(keywords=keywords, categories_lines=categories_lines)
#Search Part
print("\n ############# Started Search Query System ############# \n")
query = input('Input your search query: ')
while query != '':
query_terms = query.split()
search_sorted_results = self.get_search_results(query_terms, keywords, inverted_index)
print(f"==> search results for query: {query.split()}")
for search_result in search_sorted_results:
print(f"{search_result.strip()} - {str(titles[search_result]).strip()}")
#ask again for query or quit the while loop if no query is given
query = input('Input your search query [hit return to finish]: ')
print("\n ############# Started Recommendation Algorithm System ############# \n")
# Recommendation ALgorithm Part
seed_courseid = (input('Input your seed courseid: '))
while seed_courseid != '':
seed_courseid = str(seed_courseid).strip()
recom_sorted_results = self.get_recommendation_results(seed_courseid, keywords, inverted_index, unit_vectors)
print('==> recommendation results:')
for rec_result in recom_sorted_results:
print(f"{rec_result.strip()} - {str(titles[rec_result]).strip()}")
get_dot_product_ = self.get_dot_product(seed_courseid, str(rec_result).strip(), unit_vectors)
print(f"Dot Product Value: {get_dot_product_}")
seed_courseid = (input('Input seed courseid [hit return to finish]:'))
if __name__ == '__main__':
obj = SearchRecommendationSystem()
obj.Final()
s2-categories.tsv
courseid category subcategory
21526 Design 3D & Animation
153082 Marketing Advertising
225436 Marketing Affiliate Marketing
19482 Office Productivity Apple
33883 Office Productivity Apple
59526 IT & Software Operating Systems
29219 Personal Development Career Development
35057 Personal Development Career Development
40751 Personal Development Career Development
65210 Personal Development Career Development
234414 Personal Development Career Development
s2-titles.txt 外观示例
courseidXXXYYYZZZtitleXXXYYYZZZdescription
3586XXXYYYZZZLearning Tools for Mrs B's Science Classes This is a series of lessons that will introduce students to the learning tools that will be utilized throughout the schoXXXYYYZZZThis is a series of lessons that will introduce students to the learning tools that will be utilized throughout the school year The use of these tools serves multiple purposes 1 Allow the teacher to give immediate and meaningful feedback on work that is in progress 2 Allow students to have access to content and materials when outside the classroom 3 Provide a variety of methods for students to experience learning materials 4 Provide a variety of methods for students to demonstrate learning 5 Allow for more time sensitive correction grading and reflections on concepts that are assessed
修改方法
def get_dot_product(self, courseid1, courseid2, unit_vectors):
# u1 = unit_vectors[courseid1]
# u2 = unit_vectors[courseid2]
# dimensions = set(u1).intersection(set(u2))
# dot_product = sum(u1[dimension] * u2.get(dimension, 0) for dimension in dimensions)
u1 = unit_vectors[courseid1]
u2 = unit_vectors[courseid2]
dot_product = sum(u1[dimension] * u2.get(dimension, 0) for dimension in u2)
return dot_product
显然 unit_vectors
是一个字典,您可以从中提取 2 个值,u1
和 u2
。
但那些是什么?显然也听写(这个迭代对列表没有意义):
for dimension in u1:
if dimension in u2:
dot_product += u1[dimension] * u2[dimension]
但是 u1[dimension]
是什么?一个列表?一个数组。
通常 dict
由 key
访问,就像您在这里所做的那样。没有 numpy 风格的“矢量化”。 vals = list(u1.values())
获取所有值的列表,并且可以想象它可以制成一个数组(如果元素是正确的)
arr1 = np.array(list(u1.values()))
和 np.dot(arr1, arr2)
可能有效
如果您给出具体的小例子 - 使用真实的工作数据(并跳过复杂的生成代码),您将获得最佳答案。聚焦问题核心,30秒阅读,把握问题!
===
更深入地研究您的 dot
函数;这复制了核心(我认为)。最初我错过了这样一个事实,即您不是在 u2
键上进行迭代,而是在寻找匹配的键。
def foo(dd):
x = 0
u1 = dd['u1']
u2 = dd['u2']
for k in u1:
if k in u2:
x += u1[k]*u2[k]
return x
然后制作字典中的字典:
In [30]: keys=list('abcde'); values=[1,2,3,4,5]
In [31]: adict = {k:v for k,v in zip(keys,values)}
In [32]: dd = {'u1':adict, 'u2':adict}
In [41]: dd
Out[41]:
{'u1': {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5},
'u2': {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}}
In [42]: foo(dd)
Out[42]: 55
在这种情况下,子字典匹配,所以我们用一个简单的数组得到相同的值 dot
:
In [43]: np.dot(values,values)
Out[43]: 55
但是如果 u2
是不同的,使用不同的 key/value 对,可能还有不同的键,结果将是不同的。我看不到解决按键迭代访问的方法。与字典访问相比,作业的 sum-of-products 部分是次要的。
In [44]: dd['u2'] = {'e':3, 'f':4, 'a':3}
In [45]: foo(dd)
Out[45]: 18
我们可以构造其他更适合快速 dot
类计算的数据结构。但那是另一个话题了。
我正在尝试使用像 NumPy 这样更快的东西来替换循环的点积
我对点积进行了研究并且有点理解并且可以通过几种方式让它与玩具数据一起工作,但在实际使用数据框实现它时不是 100%。
我查看了这些和其他 SO 线程,但运气不佳 avoide loop dot product, matlab and dot product subarrays without for loop and multiple numpy dot products without a loop
希望做这样的事情,它与 np 数组中的玩具数字一起使用
u1 =np.array([1,2,3])
u2 =np.array([2,3,4])
v1.dot(v2)
20
u1 =np.array([1,2,3])
u2 =np.array([2,3,4])
(u1 * u2).sum()
20
u1 =np.array([1,2,3])
u2 =np.array([2,3,4])
sum([x1*x2 for x1, x2 in zip (u1, u2)])
20
这是当前工作得到的点积
我想在没有 for 循环的情况下执行此操作
def get_dot_product(self, courseid1, courseid2, unit_vectors):
u1 = unit_vectors[courseid1]
u2 = unit_vectors[courseid2]
dot_product = 0.0
for dimension in u1:
if dimension in u2:
dot_product += u1[dimension] * u2[dimension]
return dot_product
**代码**
#!/usr/bin/env python
# coding: utf-8
class SearchRecommendationSystem:
def __init__(self):
pass
def get_bag_of_words(self, titles_lines):
bag_of_words = {}
for index, row in titles_lines.iterrows():
courseid, course_bag_of_words = self.get_course_bag_of_words(row)
for word in course_bag_of_words:
word = str(word).strip() # added
if word not in bag_of_words:
bag_of_words[word] = course_bag_of_words[word]
else:
bag_of_words[word] += course_bag_of_words[word]
return bag_of_words
def get_course_bag_of_words(self, line):
course_bag_of_words = {}
courseid = line['courseid']
title = line['title'].lower()
description = line['description'].lower()
wordlist = title.split() + description.split()
if len(wordlist) >= 10:
for word in wordlist:
word = str(word).strip() # added
if word not in course_bag_of_words:
course_bag_of_words[word] = 1
else:
course_bag_of_words[word] += 1
return courseid, course_bag_of_words
def get_sorted_results(self, d):
kv_list = d.items()
vk_list = []
for kv in kv_list:
k, v = kv
vk = v, k
vk_list.append(vk)
vk_list.sort()
vk_list.reverse()
k_list = []
for vk in vk_list[:10]:
v, k = vk
k_list.append(k)
return k_list
def get_keywords(self, titles_lines, bag_of_words):
n = sum(bag_of_words.values())
keywords = {}
for index, row in titles_lines.iterrows():
courseid, course_bag_of_words = self.get_course_bag_of_words(row)
term_importance = {}
for word in course_bag_of_words:
word = str(word).strip() # extra
tf_course = (float(course_bag_of_words[word]) / sum(course_bag_of_words.values()))
tf_overall = float(bag_of_words[word]) / n
term_importance[word] = tf_course / tf_overall
keywords[str(courseid)] = self.get_sorted_results(term_importance)
return keywords
def get_inverted_index(self, keywords):
inverted_index = {}
for courseid in keywords:
for keyword in keywords[courseid]:
if keyword not in inverted_index:
keyword = str(keyword).strip() # added
inverted_index[keyword] = []
inverted_index[keyword].append(courseid)
return inverted_index
def get_search_results(self, query_terms, keywords, inverted_index):
search_results = {}
for term in query_terms:
term = str(term).strip()
if term in inverted_index:
for courseid in inverted_index[term]:
if courseid not in search_results:
search_results[courseid] = 0.0
search_results[courseid] += (
1 / float(keywords[courseid].index(term) + 1) *
1 / float(query_terms.index(term) + 1)
)
sorted_results = self.get_sorted_results(search_results)
return sorted_results
def get_titles(self, titles_lines):
titles = {}
for index, row in titles_lines.iterrows():
titles[row['courseid']] = row['title'][:60]
return titles
def get_unit_vectors(self, keywords, categories_lines):
norm = 1.884
cat = {}
subcat = {}
for line in categories_lines[1:]:
courseid_, category, subcategory = line.split('\t')
cat[courseid_] = category.strip()
subcat[courseid_] = subcategory.strip()
unit_vectors = {}
for courseid in keywords:
u = {}
if courseid in cat:
u[cat[courseid]] = 1 / norm
u[subcat[courseid]] = 1 / norm
for keyword in keywords[courseid]:
u[keyword] = (1 / float(keywords[courseid].index(keyword) + 1) / norm)
unit_vectors[courseid] = u
return unit_vectors
def get_dot_product(self, courseid1, courseid2, unit_vectors):
u1 = unit_vectors[courseid1]
u2 = unit_vectors[courseid2]
dot_product = 0.0
for dimension in u1:
if dimension in u2:
dot_product += u1[dimension] * u2[dimension]
return dot_product
def get_recommendation_results(self, seed_courseid, keywords, inverted_index, unit_vectors):
courseids = []
seed_courseid = str(seed_courseid).strip()
for keyword in keywords[seed_courseid]:
for courseid in inverted_index[keyword]:
if courseid not in courseids and courseid != seed_courseid:
courseids.append(courseid)
dot_products = {}
for courseid in courseids:
dot_products[courseid] = self.get_dot_product(seed_courseid, courseid, unit_vectors)
sorted_results = self.get_sorted_results(dot_products)
return sorted_results
def Final(self):
print("Reading Title file.......")
titles_lines = open('s2-titles.txt', encoding="utf8").readlines()
print("Reading Category file.......")
categories_lines = open('s2-categories.tsv', encoding = "utf8").readlines()
print("Getting Supported Functions Data")
bag_of_words = self.get_bag_of_words(titles_lines)
keywords = self.get_keywords(titles_lines, bag_of_words)
inverted_index = self.get_inverted_index(keywords)
titles = self.get_titles(titles_lines)
print("Getting Unit Vectors")
unit_vectors = self.get_unit_vectors(keywords=keywords, categories_lines=categories_lines)
#Search Part
print("\n ############# Started Search Query System ############# \n")
query = input('Input your search query: ')
while query != '':
query_terms = query.split()
search_sorted_results = self.get_search_results(query_terms, keywords, inverted_index)
print(f"==> search results for query: {query.split()}")
for search_result in search_sorted_results:
print(f"{search_result.strip()} - {str(titles[search_result]).strip()}")
#ask again for query or quit the while loop if no query is given
query = input('Input your search query [hit return to finish]: ')
print("\n ############# Started Recommendation Algorithm System ############# \n")
# Recommendation ALgorithm Part
seed_courseid = (input('Input your seed courseid: '))
while seed_courseid != '':
seed_courseid = str(seed_courseid).strip()
recom_sorted_results = self.get_recommendation_results(seed_courseid, keywords, inverted_index, unit_vectors)
print('==> recommendation results:')
for rec_result in recom_sorted_results:
print(f"{rec_result.strip()} - {str(titles[rec_result]).strip()}")
get_dot_product_ = self.get_dot_product(seed_courseid, str(rec_result).strip(), unit_vectors)
print(f"Dot Product Value: {get_dot_product_}")
seed_courseid = (input('Input seed courseid [hit return to finish]:'))
if __name__ == '__main__':
obj = SearchRecommendationSystem()
obj.Final()
s2-categories.tsv
courseid category subcategory
21526 Design 3D & Animation
153082 Marketing Advertising
225436 Marketing Affiliate Marketing
19482 Office Productivity Apple
33883 Office Productivity Apple
59526 IT & Software Operating Systems
29219 Personal Development Career Development
35057 Personal Development Career Development
40751 Personal Development Career Development
65210 Personal Development Career Development
234414 Personal Development Career Development
s2-titles.txt 外观示例
courseidXXXYYYZZZtitleXXXYYYZZZdescription
3586XXXYYYZZZLearning Tools for Mrs B's Science Classes This is a series of lessons that will introduce students to the learning tools that will be utilized throughout the schoXXXYYYZZZThis is a series of lessons that will introduce students to the learning tools that will be utilized throughout the school year The use of these tools serves multiple purposes 1 Allow the teacher to give immediate and meaningful feedback on work that is in progress 2 Allow students to have access to content and materials when outside the classroom 3 Provide a variety of methods for students to experience learning materials 4 Provide a variety of methods for students to demonstrate learning 5 Allow for more time sensitive correction grading and reflections on concepts that are assessed
修改方法
def get_dot_product(self, courseid1, courseid2, unit_vectors):
# u1 = unit_vectors[courseid1]
# u2 = unit_vectors[courseid2]
# dimensions = set(u1).intersection(set(u2))
# dot_product = sum(u1[dimension] * u2.get(dimension, 0) for dimension in dimensions)
u1 = unit_vectors[courseid1]
u2 = unit_vectors[courseid2]
dot_product = sum(u1[dimension] * u2.get(dimension, 0) for dimension in u2)
return dot_product
显然 unit_vectors
是一个字典,您可以从中提取 2 个值,u1
和 u2
。
但那些是什么?显然也听写(这个迭代对列表没有意义):
for dimension in u1:
if dimension in u2:
dot_product += u1[dimension] * u2[dimension]
但是 u1[dimension]
是什么?一个列表?一个数组。
通常 dict
由 key
访问,就像您在这里所做的那样。没有 numpy 风格的“矢量化”。 vals = list(u1.values())
获取所有值的列表,并且可以想象它可以制成一个数组(如果元素是正确的)
arr1 = np.array(list(u1.values()))
和 np.dot(arr1, arr2)
可能有效
如果您给出具体的小例子 - 使用真实的工作数据(并跳过复杂的生成代码),您将获得最佳答案。聚焦问题核心,30秒阅读,把握问题!
===
更深入地研究您的 dot
函数;这复制了核心(我认为)。最初我错过了这样一个事实,即您不是在 u2
键上进行迭代,而是在寻找匹配的键。
def foo(dd):
x = 0
u1 = dd['u1']
u2 = dd['u2']
for k in u1:
if k in u2:
x += u1[k]*u2[k]
return x
然后制作字典中的字典:
In [30]: keys=list('abcde'); values=[1,2,3,4,5]
In [31]: adict = {k:v for k,v in zip(keys,values)}
In [32]: dd = {'u1':adict, 'u2':adict}
In [41]: dd
Out[41]:
{'u1': {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5},
'u2': {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}}
In [42]: foo(dd)
Out[42]: 55
在这种情况下,子字典匹配,所以我们用一个简单的数组得到相同的值 dot
:
In [43]: np.dot(values,values)
Out[43]: 55
但是如果 u2
是不同的,使用不同的 key/value 对,可能还有不同的键,结果将是不同的。我看不到解决按键迭代访问的方法。与字典访问相比,作业的 sum-of-products 部分是次要的。
In [44]: dd['u2'] = {'e':3, 'f':4, 'a':3}
In [45]: foo(dd)
Out[45]: 18
我们可以构造其他更适合快速 dot
类计算的数据结构。但那是另一个话题了。