顺序层的输入 0 与预期 ndim=3 的层不兼容,发现 ndim=2。已收到完整形状:[None, 1]
Input 0 of layer sequential is incompatible with the layer expected ndim=3, found ndim=2. Full shape received: [None, 1]
我正在使用 keras 进行文本分类。经过预处理和矢量化后,我的训练和验证数据详细信息如下所示:
print(X_train.shape, ',', X_train.ndim, ',', type(X_train))
print(y_train.shape, ',', y_train.ndim, ',', type(y_train))
print(X_valid.shape, ',', X_valid.ndim, ',', type(X_valid))
print(y_valid.shape, ',', y_valid.ndim, ',', type(y_valid))
print(data_dim)
输出为:
(14904,) , 1 , <class 'numpy.ndarray'>
(14904,) , 1 , <class 'numpy.ndarray'>
(3725,) , 1 , <class 'numpy.ndarray'>
(3725,) , 1 , <class 'numpy.ndarray'>
15435
则模型定义为:
model = Sequential()
model.add(LSTM(100, input_shape=(data_dim,1 ), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(200))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics = ['accuracy'])
model.summary()
模型摘要:
模型拟合:
model.fit(X_train,y_train, validation_data = (X_valid, y_valid),
batch_size=batch_size, epochs=epochs)
为什么会出现这个错误?
----> 1 model.fit(X_train,y_train, validation_data = (X_valid, y_valid),
2 batch_size=batch_size, epochs=epochs)
...
...
ValueError: Input 0 of layer sequential is incompatible with the layer:
expected ndim=3, found ndim=2. Full shape received: [None, 1]
终于在this kaggle notebook的帮助下克服了这个问题。
我将数据维度更改为:
print(X_train.shape)
print(y_train.shape)
print(X_valid.shape)
print(y_valid.shape)
print(X_test.shape)
print(y_test.shape)
print(data_dim)
########################## output ###########################
(14904, 15435)
(14904,)
(3725, 15435)
(3725,)
(5686, 15435)
(5686,)
15435
然后将数据重塑为:
X_train = np.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1]))
X_valid = np.reshape(X_valid, (X_valid.shape[0], 1, X_valid.shape[1]))
X_test = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1]))
########################## output ###########################
(14904, 1, 15435)
(3725, 1, 15435)
(5686, 1, 15435)
最后把LSTM
input_shape
改成:
model.add(LSTM(units=50, input_shape=(1, data_dim), return_sequences=True))
现在,模型摘要为:
现在没有问题,model.fit
执行正常。
我正在使用 keras 进行文本分类。经过预处理和矢量化后,我的训练和验证数据详细信息如下所示:
print(X_train.shape, ',', X_train.ndim, ',', type(X_train))
print(y_train.shape, ',', y_train.ndim, ',', type(y_train))
print(X_valid.shape, ',', X_valid.ndim, ',', type(X_valid))
print(y_valid.shape, ',', y_valid.ndim, ',', type(y_valid))
print(data_dim)
输出为:
(14904,) , 1 , <class 'numpy.ndarray'>
(14904,) , 1 , <class 'numpy.ndarray'>
(3725,) , 1 , <class 'numpy.ndarray'>
(3725,) , 1 , <class 'numpy.ndarray'>
15435
则模型定义为:
model = Sequential()
model.add(LSTM(100, input_shape=(data_dim,1 ), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(200))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics = ['accuracy'])
model.summary()
模型摘要:
模型拟合:
model.fit(X_train,y_train, validation_data = (X_valid, y_valid),
batch_size=batch_size, epochs=epochs)
为什么会出现这个错误?
----> 1 model.fit(X_train,y_train, validation_data = (X_valid, y_valid),
2 batch_size=batch_size, epochs=epochs)
...
...
ValueError: Input 0 of layer sequential is incompatible with the layer:
expected ndim=3, found ndim=2. Full shape received: [None, 1]
终于在this kaggle notebook的帮助下克服了这个问题。
我将数据维度更改为:
print(X_train.shape)
print(y_train.shape)
print(X_valid.shape)
print(y_valid.shape)
print(X_test.shape)
print(y_test.shape)
print(data_dim)
########################## output ###########################
(14904, 15435)
(14904,)
(3725, 15435)
(3725,)
(5686, 15435)
(5686,)
15435
然后将数据重塑为:
X_train = np.reshape(X_train, (X_train.shape[0], 1, X_train.shape[1]))
X_valid = np.reshape(X_valid, (X_valid.shape[0], 1, X_valid.shape[1]))
X_test = np.reshape(X_test, (X_test.shape[0], 1, X_test.shape[1]))
########################## output ###########################
(14904, 1, 15435)
(3725, 1, 15435)
(5686, 1, 15435)
最后把LSTM
input_shape
改成:
model.add(LSTM(units=50, input_shape=(1, data_dim), return_sequences=True))
现在,模型摘要为:
现在没有问题,model.fit
执行正常。