Python 过滤最近距离对的代码

Python code to filter closest distance pairs

这是我的代码。请注意,这只是一个玩具数据集,我的真实数据集在每个 table.

中包含大约 1000 个条目
import pandas as pd
import numpy as np
import sklearn.neighbors

locations_stores = pd.DataFrame({
    'city_A' :     ['City1', 'City2', 'City3', 'City4', ],
    'latitude_A':  [ 56.361176, 56.34061, 56.374749, 56.356624],
    'longitude_A': [ 4.899779, 4.871195, 4.893847, 4.912281]
})
locations_neigh = pd.DataFrame({
    'neigh_B':      ['Neigh1', 'Neigh2', 'Neigh3', 'Neigh4','Neigh5'],
    'latitude_B' : [ 53.314, 53.318, 53.381, 53.338,53.7364],
    'longitude_B': [ 4.955,4.975,4.855,4.873,4.425]
})

/some calc code here/

##df_dist_long.loc[df_dist_long.sort_values('Dist(km)').groupby('neigh_B')['city_A'].min()]##


df_dist_long.to_csv('dist.csv',float_format='%.2f')

当我添加 df_dist_long.loc[df_dist_long.sort_values('Dist(km)').groupby('neigh_B')['city_A'].min()] 时。我得到这个错误

 File "C:\Python\Python38\lib\site-packages\pandas\core\groupby\groupby.py", line 656, in wrapper                                                    
    raise ValueError                                                                                                                                  
ValueError    

                                                                        
                                                           

没有它,输出就像这样...

    city_A  neigh_B Dist(km)
0   City1   Neigh1  6.45
1   City2   Neigh1  6.42
2   City3   Neigh1  7.93
3   City4   Neigh1  5.56
4   City1   Neigh2  8.25
5   City2   Neigh2  6.67
6   City3   Neigh2  8.55
7   City4   Neigh2  8.92
8   City1   Neigh3  7.01   ..... and so on

我想要的是另一个 table 过滤离邻居最近的城市。例如,对于 'Neigh1',City4 是最近的(距离最小)。所以我想要 table 如下

city_A  neigh_B Dist(km)
0   City4   Neigh1  5.56
1   City3   Neigh2  4.32
2   City1   Neigh3  7.93
3   City2   Neigh4  3.21
4   City4   Neigh5  4.56
5   City5   Neigh6  6.67
6   City3   Neigh7  6.16
 ..... and so on

城市名称是否重复并不重要,我只想将最接近的一对保存到另一个 csv。这个怎么实现,求高手帮忙!!

如果您只想计算每个社区最近的城市,则不需要计算完整的距离矩阵。

这是一个有效的代码示例,但我得到的输出与您的不同。可能是 lat/long 错误。

我用了你的数据

import pandas as pd
import numpy as np
import sklearn.neighbors

locations_stores = pd.DataFrame({
    'city_A' :     ['City1', 'City2', 'City3', 'City4', ],
    'latitude_A':  [ 56.361176, 56.34061, 56.374749, 56.356624],
    'longitude_A': [ 4.899779, 4.871195, 4.893847, 4.912281]
})
locations_neigh = pd.DataFrame({
    'neigh_B':      ['Neigh1', 'Neigh2', 'Neigh3', 'Neigh4','Neigh5'],
    'latitude_B' : [ 53.314, 53.318, 53.381, 53.338,53.7364],
    'longitude_B': [ 4.955,4.975,4.855,4.873,4.425]
})

创建了一个我们可以查询的 BallTree

from sklearn.neighbors import BallTree
import numpy as np

stores_gps = locations_stores[['latitude_A', 'longitude_A']].values
neigh_gps = locations_neigh[['latitude_B', 'longitude_B']].values

tree = BallTree(stores_gps, leaf_size=15, metric='haversine')

并且对于我们想要最接近的每个 Neigh (k=1) City/Store:

distance, index = tree.query(neigh_gps, k=1)
 
earth_radius = 6371

distance_in_km = distance * earth_radius

我们可以用

创建结果的 DataFrame
pd.DataFrame({
    'Neighborhood' : locations_neigh.neigh_B,
    'Closest_city' : locations_stores.city_A[ np.array(index)[:,0] ].values,
    'Distance_to_city' : distance_in_km[:,0]
})

这给了我

  Neighborhood Closest_city  Distance_to_city
0       Neigh1        City2      19112.334106
1       Neigh2        City2      19014.154744
2       Neigh3        City2      18851.168702
3       Neigh4        City2      19129.555188
4       Neigh5        City4      15498.181486

由于我们的输出不同,有一些错误需要更正。也许交换了 lat/long,我只是在这里猜测。但这是您想要的方法,尤其是对于您的数据量。


编辑:对于全矩阵,使用

from sklearn.neighbors import DistanceMetric

dist = DistanceMetric.get_metric('haversine')

earth_radius = 6371

haversine_distances = dist.pairwise(np.radians(stores_gps), np.radians(neigh_gps) )
haversine_distances *= earth_radius

这将给出完整的矩阵,但请注意,对于较大的数字,这将花费很长时间,并且预计会受到内存限制。

您可以使用 numpy 的 np.argmin(haversine_distances, axis=1) 从 BallTree 获得类似的结果。它将导致距离最近的索引,可以像在 BallTree 示例中一样使用。