“TypeError: unhashable type: 'Dimension'” with BatchNormalization(axis=CHANNEL_AXIS)(input)
“TypeError: unhashable type: 'Dimension'” with BatchNormalization(axis=CHANNEL_AXIS)(input)
我有以下从 github 获得的 ResNet 3D 架构。它是 R3D 的 Keras 实现。该架构旨在训练视频分类模型
## Resnet 3D architecture
# Taken from https://github.com/JihongJu/keras-resnet3d/blob/master/resnet3d/resnet3d.py
def _bn_relu(input):
"""Helper to build a BN -> relu block (by @raghakot)."""
norm = BatchNormalization(axis=CHANNEL_AXIS)(input)
return Activation("relu")(norm)
def _conv_bn_relu3D(**conv_params):
filters = conv_params["filters"]
kernel_size = conv_params["kernel_size"]
strides = conv_params.setdefault("strides", (1, 1, 1))
kernel_initializer = conv_params.setdefault(
"kernel_initializer", "he_normal")
padding = conv_params.setdefault("padding", "same")
kernel_regularizer = conv_params.setdefault("kernel_regularizer",
l2(1e-4))
def f(input):
conv = Conv3D(filters=filters, kernel_size=kernel_size,
strides=strides, kernel_initializer=kernel_initializer,
padding=padding,
kernel_regularizer=kernel_regularizer)(input)
return _bn_relu(conv)
return f
def _bn_relu_conv3d(**conv_params):
"""Helper to build a BN -> relu -> conv3d block."""
filters = conv_params["filters"]
kernel_size = conv_params["kernel_size"]
strides = conv_params.setdefault("strides", (1, 1, 1))
kernel_initializer = conv_params.setdefault("kernel_initializer",
"he_normal")
padding = conv_params.setdefault("padding", "same")
kernel_regularizer = conv_params.setdefault("kernel_regularizer",
l2(1e-4))
def f(input):
activation = _bn_relu(input)
return Conv3D(filters=filters, kernel_size=kernel_size,
strides=strides, kernel_initializer=kernel_initializer,
padding=padding,
kernel_regularizer=kernel_regularizer)(activation)
return f
def _shortcut3d(input, residual):
"""3D shortcut to match input and residual and merges them with "sum"."""
stride_dim1 = math.ceil(int(input.shape[DIM1_AXIS]) \
/ int(residual.shape[DIM1_AXIS]))
stride_dim2 = math.ceil(int(input.shape[DIM2_AXIS]) \
/ int(residual.shape[DIM2_AXIS]))
stride_dim3 = math.ceil(int(input.shape[DIM3_AXIS]) \
/ int(residual.shape[DIM3_AXIS]))
equal_channels = int(residual.shape[CHANNEL_AXIS]) \
== int(input.shape[CHANNEL_AXIS])
shortcut = input
if stride_dim1 > 1 or stride_dim2 > 1 or stride_dim3 > 1 \
or not equal_channels:
shortcut = Conv3D(
filters=residual.shape[CHANNEL_AXIS],
kernel_size=(1, 1, 1),
strides=(stride_dim1, stride_dim2, stride_dim3),
kernel_initializer="he_normal", padding="valid",
kernel_regularizer=l2(1e-4)
)(input)
return add([shortcut, residual])
def _residual_block3d(block_function, filters, kernel_regularizer, repetitions,
is_first_layer=False):
def f(input):
for i in range(repetitions):
strides = (1, 1, 1)
if i == 0 and not is_first_layer:
strides = (2, 2, 2)
input = block_function(filters=filters, strides=strides,
kernel_regularizer=kernel_regularizer,
is_first_block_of_first_layer=(
is_first_layer and i == 0)
)(input)
return input
return f
def basic_block(filters, strides=(1, 1, 1), kernel_regularizer=l2(1e-4),
is_first_block_of_first_layer=False):
"""Basic 3 X 3 X 3 convolution blocks. Extended from raghakot's 2D impl."""
def f(input):
if is_first_block_of_first_layer:
# don't repeat bn->relu since we just did bn->relu->maxpool
conv1 = Conv3D(filters=filters, kernel_size=(3, 3, 3),
strides=strides, padding="same",
kernel_initializer="he_normal",
kernel_regularizer=kernel_regularizer
)(input)
else:
conv1 = _bn_relu_conv3d(filters=filters,
kernel_size=(3, 3, 3),
strides=strides,
kernel_regularizer=kernel_regularizer
)(input)
residual = _bn_relu_conv3d(filters=filters, kernel_size=(3, 3, 3),
kernel_regularizer=kernel_regularizer
)(conv1)
return _shortcut3d(input, residual)
return f
def bottleneck(filters, strides=(1, 1, 1), kernel_regularizer=l2(1e-4),
is_first_block_of_first_layer=False):
"""Basic 3 X 3 X 3 convolution blocks. Extended from raghakot's 2D impl."""
def f(input):
if is_first_block_of_first_layer:
# don't repeat bn->relu since we just did bn->relu->maxpool
conv_1_1 = Conv3D(filters=filters, kernel_size=(1, 1, 1),
strides=strides, padding="same",
kernel_initializer="he_normal",
kernel_regularizer=kernel_regularizer
)(input)
else:
conv_1_1 = _bn_relu_conv3d(filters=filters, kernel_size=(1, 1, 1),
strides=strides,
kernel_regularizer=kernel_regularizer
)(input)
conv_3_3 = _bn_relu_conv3d(filters=filters, kernel_size=(3, 3, 3),
kernel_regularizer=kernel_regularizer
)(conv_1_1)
residual = _bn_relu_conv3d(filters=filters * 4, kernel_size=(1, 1, 1),
kernel_regularizer=kernel_regularizer
)(conv_3_3)
return _shortcut3d(input, residual)
return f
def _handle_data_format():
global DIM1_AXIS
global DIM2_AXIS
global DIM3_AXIS
global CHANNEL_AXIS
if K.image_data_format() == 'channels_last':
DIM1_AXIS = 1
DIM2_AXIS = 2
DIM3_AXIS = 3
CHANNEL_AXIS = 4
else:
CHANNEL_AXIS = 1
DIM1_AXIS = 2
DIM2_AXIS = 3
DIM3_AXIS = 4
def _get_block(identifier):
if isinstance(identifier, six.string_types):
res = globals().get(identifier)
if not res:
raise ValueError('Invalid {}'.format(identifier))
return res
return identifier
class Resnet3DBuilder(object):
"""ResNet3D."""
@staticmethod
def build(input_shape, num_outputs, block_fn, repetitions, reg_factor):
"""Instantiate a vanilla ResNet3D keras model.
# Arguments
input_shape: Tuple of input shape in the format
(conv_dim1, conv_dim2, conv_dim3, channels) if dim_ordering='tf'
(filter, conv_dim1, conv_dim2, conv_dim3) if dim_ordering='th'
num_outputs: The number of outputs at the final softmax layer
block_fn: Unit block to use {'basic_block', 'bottlenack_block'}
repetitions: Repetitions of unit blocks
# Returns
model: a 3D ResNet model that takes a 5D tensor (volumetric images
in batch) as input and returns a 1D vector (prediction) as output.
"""
_handle_data_format()
if len(input_shape) != 4:
raise ValueError("Input shape should be a tuple "
"(conv_dim1, conv_dim2, conv_dim3, channels) "
"for tensorflow as backend or "
"(channels, conv_dim1, conv_dim2, conv_dim3) "
"for theano as backend")
block_fn = _get_block(block_fn)
input = Input(shape=input_shape)
# first conv
conv1 = _conv_bn_relu3D(filters=64, kernel_size=(7, 7, 7),
strides=(2, 2, 2),
kernel_regularizer=l2(reg_factor)
)(input)
pool1 = MaxPooling3D(pool_size=(3, 3, 3), strides=(2, 2, 2),
padding="same")(conv1)
# repeat blocks
block = pool1
filters = 64
for i, r in enumerate(repetitions):
block = _residual_block3d(block_fn, filters=filters,
kernel_regularizer=l2(reg_factor),
repetitions=r, is_first_layer=(i == 0)
)(block)
filters *= 2
# last activation
block_output = _bn_relu(block)
# average poll and classification
pool2 = AveragePooling3D(pool_size=(block.shape[DIM1_AXIS],
block.shape[DIM2_AXIS],
block.shape[DIM3_AXIS]),
strides=(1, 1, 1))(block_output)
flatten1 = Flatten()(pool2)
if num_outputs > 1:
dense = Dense(units=num_outputs,
kernel_initializer="he_normal",
activation="softmax",
kernel_regularizer=l2(reg_factor))(flatten1)
else:
dense = Dense(units=num_outputs,
kernel_initializer="he_normal",
activation="sigmoid",
kernel_regularizer=l2(reg_factor))(flatten1)
model = Model(inputs=input, outputs=dense)
return model
@staticmethod
def build_resnet_18(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 18."""
return Resnet3DBuilder.build(input_shape, num_outputs, basic_block,
[2, 2, 2, 2], reg_factor=reg_factor)
@staticmethod
def build_resnet_34(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 34."""
return Resnet3DBuilder.build(input_shape, num_outputs, basic_block,
[3, 4, 6, 3], reg_factor=reg_factor)
@staticmethod
def build_resnet_50(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 50."""
return Resnet3DBuilder.build(input_shape, num_outputs, bottleneck,
[3, 4, 6, 3], reg_factor=reg_factor)
@staticmethod
def build_resnet_101(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 101."""
return Resnet3DBuilder.build(input_shape, num_outputs, bottleneck,
[3, 4, 23, 3], reg_factor=reg_factor)
@staticmethod
def build_resnet_152(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 152."""
return Resnet3DBuilder.build(input_shape, num_outputs, bottleneck,
[3, 8, 36, 3], reg_factor=reg_factor)
当我在视频上训练网络时,出现以下错误:
Error: unhashable type: 'Dimension'
File "<ipython-input-29-788d091a6763>", line 1961, in main
trained_model_name)
File "<ipython-input-29-788d091a6763>", line 1805, in train
model = train_load_model(model_type, training_condition, sample_input.shape, nb_classes)
File "<ipython-input-29-788d091a6763>", line 1684, in train_load_model
model = Resnet3DBuilder.build_resnet_50((96, 96, 96, 1), 20)
File "<ipython-input-29-788d091a6763>", line 1543, in build_resnet_50
[3, 4, 6, 3], reg_factor=reg_factor)
File "<ipython-input-29-788d091a6763>", line 1501, in build
)(block)
File "<ipython-input-29-788d091a6763>", line 1372, in f
)(input)
File "<ipython-input-29-788d091a6763>", line 1419, in f
)(input)
File "<ipython-input-29-788d091a6763>", line 1334, in f
activation = _bn_relu(input)
File "<ipython-input-29-788d091a6763>", line 1300, in _bn_relu
norm = BatchNormalization(axis=CHANNEL_AXIS)(input)
File "/usr/local/lib/python3.6/dist-packages/keras/engine/base_layer.py", line 440, in __call__
self.assert_input_compatibility(inputs)
File "/usr/local/lib/python3.6/dist-packages/keras/engine/base_layer.py", line 345, in assert_input_compatibility
x_shape[int(axis)] not in {value, None}):
我有以下 Tensorflow、Keras 和 Python 版本:
- 张量流:1.15.0
- 凯拉斯:2.2.4
- Python : 3.6
你能告诉我如何解决这个错误吗?我看到将 Dimension 转换为 int 解决了其他地方的问题,但我不知道我应该在这里转换什么。
要解决这个问题,我们需要将每个形状访问转换为 int。
示例:
residual.shape[CHANNEL_AXIS]
需要重写int(residual.shape[CHANNEL_AXIS])
新版代码如下:
## Resnet 3D architecture
# Taken from https://github.com/JihongJu/keras-resnet3d/blob/master/resnet3d/resnet3d.py
def _bn_relu(input):
"""Helper to build a BN -> relu block (by @raghakot)."""
norm = BatchNormalization(axis=CHANNEL_AXIS)(input)
return Activation("relu")(norm)
def _conv_bn_relu3D(**conv_params):
filters = conv_params["filters"]
kernel_size = conv_params["kernel_size"]
strides = conv_params.setdefault("strides", (1, 1, 1))
kernel_initializer = conv_params.setdefault(
"kernel_initializer", "he_normal")
padding = conv_params.setdefault("padding", "same")
kernel_regularizer = conv_params.setdefault("kernel_regularizer",
l2(1e-4))
def f(input):
conv = Conv3D(filters=filters, kernel_size=kernel_size,
strides=strides, kernel_initializer=kernel_initializer,
padding=padding,
kernel_regularizer=kernel_regularizer)(input)
return _bn_relu(conv)
return f
def _bn_relu_conv3d(**conv_params):
"""Helper to build a BN -> relu -> conv3d block."""
filters = conv_params["filters"]
kernel_size = conv_params["kernel_size"]
strides = conv_params.setdefault("strides", (1, 1, 1))
kernel_initializer = conv_params.setdefault("kernel_initializer",
"he_normal")
padding = conv_params.setdefault("padding", "same")
kernel_regularizer = conv_params.setdefault("kernel_regularizer",
l2(1e-4))
def f(input):
activation = _bn_relu(input)
return Conv3D(filters=filters, kernel_size=kernel_size,
strides=strides, kernel_initializer=kernel_initializer,
padding=padding,
kernel_regularizer=kernel_regularizer)(activation)
return f
def _shortcut3d(input, residual):
"""3D shortcut to match input and residual and merges them with "sum"."""
stride_dim1 = math.ceil(int(input.shape[DIM1_AXIS]) \
/ int(residual.shape[DIM1_AXIS]))
stride_dim2 = math.ceil(int(input.shape[DIM2_AXIS]) \
/ int(residual.shape[DIM2_AXIS]))
stride_dim3 = math.ceil(int(input.shape[DIM3_AXIS]) \
/ int(residual.shape[DIM3_AXIS]))
equal_channels = int(residual.shape[CHANNEL_AXIS]) \
== int(input.shape[CHANNEL_AXIS])
shortcut = input
if stride_dim1 > 1 or stride_dim2 > 1 or stride_dim3 > 1 \
or not equal_channels:
shortcut = Conv3D(
filters=int(residual.shape[CHANNEL_AXIS]),
kernel_size=(1, 1, 1),
strides=(stride_dim1, stride_dim2, stride_dim3),
kernel_initializer="he_normal", padding="valid",
kernel_regularizer=l2(1e-4)
)(input)
return add([shortcut, residual])
def _residual_block3d(block_function, filters, kernel_regularizer, repetitions,
is_first_layer=False):
def f(input):
for i in range(repetitions):
strides = (1, 1, 1)
if i == 0 and not is_first_layer:
strides = (2, 2, 2)
input = block_function(filters=filters, strides=strides,
kernel_regularizer=kernel_regularizer,
is_first_block_of_first_layer=(
is_first_layer and i == 0)
)(input)
return input
return f
def basic_block(filters, strides=(1, 1, 1), kernel_regularizer=l2(1e-4),
is_first_block_of_first_layer=False):
"""Basic 3 X 3 X 3 convolution blocks. Extended from raghakot's 2D impl."""
def f(input):
if is_first_block_of_first_layer:
# don't repeat bn->relu since we just did bn->relu->maxpool
conv1 = Conv3D(filters=filters, kernel_size=(3, 3, 3),
strides=strides, padding="same",
kernel_initializer="he_normal",
kernel_regularizer=kernel_regularizer
)(input)
else:
conv1 = _bn_relu_conv3d(filters=filters,
kernel_size=(3, 3, 3),
strides=strides,
kernel_regularizer=kernel_regularizer
)(input)
residual = _bn_relu_conv3d(filters=filters, kernel_size=(3, 3, 3),
kernel_regularizer=kernel_regularizer
)(conv1)
return _shortcut3d(input, residual)
return f
def bottleneck(filters, strides=(1, 1, 1), kernel_regularizer=l2(1e-4),
is_first_block_of_first_layer=False):
"""Basic 3 X 3 X 3 convolution blocks. Extended from raghakot's 2D impl."""
def f(input):
if is_first_block_of_first_layer:
# don't repeat bn->relu since we just did bn->relu->maxpool
conv_1_1 = Conv3D(filters=filters, kernel_size=(1, 1, 1),
strides=strides, padding="same",
kernel_initializer="he_normal",
kernel_regularizer=kernel_regularizer
)(input)
else:
conv_1_1 = _bn_relu_conv3d(filters=filters, kernel_size=(1, 1, 1),
strides=strides,
kernel_regularizer=kernel_regularizer
)(input)
conv_3_3 = _bn_relu_conv3d(filters=filters, kernel_size=(3, 3, 3),
kernel_regularizer=kernel_regularizer
)(conv_1_1)
residual = _bn_relu_conv3d(filters=filters * 4, kernel_size=(1, 1, 1),
kernel_regularizer=kernel_regularizer
)(conv_3_3)
return _shortcut3d(input, residual)
return f
def _handle_data_format():
global DIM1_AXIS
global DIM2_AXIS
global DIM3_AXIS
global CHANNEL_AXIS
if K.image_data_format() == 'channels_last':
print("here CHANNELS last")
DIM1_AXIS = 1
DIM2_AXIS = 2
DIM3_AXIS = 3
CHANNEL_AXIS = 4
else:
CHANNEL_AXIS = 1
DIM1_AXIS = 2
DIM2_AXIS = 3
DIM3_AXIS = 4
def _get_block(identifier):
if isinstance(identifier, six.string_types):
res = globals().get(identifier)
if not res:
raise ValueError('Invalid {}'.format(identifier))
return res
return identifier
class Resnet3DBuilder(object):
"""ResNet3D."""
@staticmethod
def build(input_shape, num_outputs, block_fn, repetitions, reg_factor):
"""Instantiate a vanilla ResNet3D keras model.
# Arguments
input_shape: Tuple of input shape in the format
(conv_dim1, conv_dim2, conv_dim3, channels) if dim_ordering='tf'
(filter, conv_dim1, conv_dim2, conv_dim3) if dim_ordering='th'
num_outputs: The number of outputs at the final softmax layer
block_fn: Unit block to use {'basic_block', 'bottlenack_block'}
repetitions: Repetitions of unit blocks
# Returns
model: a 3D ResNet model that takes a 5D tensor (volumetric images
in batch) as input and returns a 1D vector (prediction) as output.
"""
_handle_data_format()
if len(input_shape) != 4:
raise ValueError("Input shape should be a tuple "
"(conv_dim1, conv_dim2, conv_dim3, channels) "
"for tensorflow as backend or "
"(channels, conv_dim1, conv_dim2, conv_dim3) "
"for theano as backend")
block_fn = _get_block(block_fn)
input = Input(shape=input_shape)
# first conv
conv1 = _conv_bn_relu3D(filters=64, kernel_size=(7, 7, 7),
strides=(2, 2, 2),
kernel_regularizer=l2(reg_factor)
)(input)
pool1 = MaxPooling3D(pool_size=(3, 3, 3), strides=(2, 2, 2),
padding="same")(conv1)
# repeat blocks
block = pool1
filters = 64
for i, r in enumerate(repetitions):
block = _residual_block3d(block_fn, filters=filters,
kernel_regularizer=l2(reg_factor),
repetitions=r, is_first_layer=(i == 0)
)(block)
filters *= 2
# last activation
block_output = _bn_relu(block)
# average poll and classification
pool2 = AveragePooling3D(pool_size=(int(block.shape[DIM1_AXIS]),
int(block.shape[DIM2_AXIS]),
int(block.shape[DIM3_AXIS])),
strides=(1, 1, 1))(block_output)
flatten1 = Flatten()(pool2)
if num_outputs > 1:
dense = Dense(units=num_outputs,
kernel_initializer="he_normal",
activation="softmax",
kernel_regularizer=l2(reg_factor))(flatten1)
else:
dense = Dense(units=num_outputs,
kernel_initializer="he_normal",
activation="sigmoid",
kernel_regularizer=l2(reg_factor))(flatten1)
model = Model(inputs=input, outputs=dense)
return model
@staticmethod
def build_resnet_18(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 18."""
return Resnet3DBuilder.build(input_shape, num_outputs, basic_block,
[2, 2, 2, 2], reg_factor=reg_factor)
@staticmethod
def build_resnet_34(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 34."""
return Resnet3DBuilder.build(input_shape, num_outputs, basic_block,
[3, 4, 6, 3], reg_factor=reg_factor)
@staticmethod
def build_resnet_50(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 50."""
return Resnet3DBuilder.build(input_shape, num_outputs, bottleneck,
[3, 4, 6, 3], reg_factor=reg_factor)
@staticmethod
def build_resnet_101(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 101."""
return Resnet3DBuilder.build(input_shape, num_outputs, bottleneck,
[3, 4, 23, 3], reg_factor=reg_factor)
@staticmethod
def build_resnet_152(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 152."""
return Resnet3DBuilder.build(input_shape, num_outputs, bottleneck,
[3, 8, 36, 3], reg_factor=reg_factor)
最新版本的 Keras 和 Tensorflow 不会出现此问题,但我需要保留这两个库的旧版本,因为我的其他脚本无法 运行 在最新版本的 Tensorflow/Keras.
我有以下从 github 获得的 ResNet 3D 架构。它是 R3D 的 Keras 实现。该架构旨在训练视频分类模型
## Resnet 3D architecture
# Taken from https://github.com/JihongJu/keras-resnet3d/blob/master/resnet3d/resnet3d.py
def _bn_relu(input):
"""Helper to build a BN -> relu block (by @raghakot)."""
norm = BatchNormalization(axis=CHANNEL_AXIS)(input)
return Activation("relu")(norm)
def _conv_bn_relu3D(**conv_params):
filters = conv_params["filters"]
kernel_size = conv_params["kernel_size"]
strides = conv_params.setdefault("strides", (1, 1, 1))
kernel_initializer = conv_params.setdefault(
"kernel_initializer", "he_normal")
padding = conv_params.setdefault("padding", "same")
kernel_regularizer = conv_params.setdefault("kernel_regularizer",
l2(1e-4))
def f(input):
conv = Conv3D(filters=filters, kernel_size=kernel_size,
strides=strides, kernel_initializer=kernel_initializer,
padding=padding,
kernel_regularizer=kernel_regularizer)(input)
return _bn_relu(conv)
return f
def _bn_relu_conv3d(**conv_params):
"""Helper to build a BN -> relu -> conv3d block."""
filters = conv_params["filters"]
kernel_size = conv_params["kernel_size"]
strides = conv_params.setdefault("strides", (1, 1, 1))
kernel_initializer = conv_params.setdefault("kernel_initializer",
"he_normal")
padding = conv_params.setdefault("padding", "same")
kernel_regularizer = conv_params.setdefault("kernel_regularizer",
l2(1e-4))
def f(input):
activation = _bn_relu(input)
return Conv3D(filters=filters, kernel_size=kernel_size,
strides=strides, kernel_initializer=kernel_initializer,
padding=padding,
kernel_regularizer=kernel_regularizer)(activation)
return f
def _shortcut3d(input, residual):
"""3D shortcut to match input and residual and merges them with "sum"."""
stride_dim1 = math.ceil(int(input.shape[DIM1_AXIS]) \
/ int(residual.shape[DIM1_AXIS]))
stride_dim2 = math.ceil(int(input.shape[DIM2_AXIS]) \
/ int(residual.shape[DIM2_AXIS]))
stride_dim3 = math.ceil(int(input.shape[DIM3_AXIS]) \
/ int(residual.shape[DIM3_AXIS]))
equal_channels = int(residual.shape[CHANNEL_AXIS]) \
== int(input.shape[CHANNEL_AXIS])
shortcut = input
if stride_dim1 > 1 or stride_dim2 > 1 or stride_dim3 > 1 \
or not equal_channels:
shortcut = Conv3D(
filters=residual.shape[CHANNEL_AXIS],
kernel_size=(1, 1, 1),
strides=(stride_dim1, stride_dim2, stride_dim3),
kernel_initializer="he_normal", padding="valid",
kernel_regularizer=l2(1e-4)
)(input)
return add([shortcut, residual])
def _residual_block3d(block_function, filters, kernel_regularizer, repetitions,
is_first_layer=False):
def f(input):
for i in range(repetitions):
strides = (1, 1, 1)
if i == 0 and not is_first_layer:
strides = (2, 2, 2)
input = block_function(filters=filters, strides=strides,
kernel_regularizer=kernel_regularizer,
is_first_block_of_first_layer=(
is_first_layer and i == 0)
)(input)
return input
return f
def basic_block(filters, strides=(1, 1, 1), kernel_regularizer=l2(1e-4),
is_first_block_of_first_layer=False):
"""Basic 3 X 3 X 3 convolution blocks. Extended from raghakot's 2D impl."""
def f(input):
if is_first_block_of_first_layer:
# don't repeat bn->relu since we just did bn->relu->maxpool
conv1 = Conv3D(filters=filters, kernel_size=(3, 3, 3),
strides=strides, padding="same",
kernel_initializer="he_normal",
kernel_regularizer=kernel_regularizer
)(input)
else:
conv1 = _bn_relu_conv3d(filters=filters,
kernel_size=(3, 3, 3),
strides=strides,
kernel_regularizer=kernel_regularizer
)(input)
residual = _bn_relu_conv3d(filters=filters, kernel_size=(3, 3, 3),
kernel_regularizer=kernel_regularizer
)(conv1)
return _shortcut3d(input, residual)
return f
def bottleneck(filters, strides=(1, 1, 1), kernel_regularizer=l2(1e-4),
is_first_block_of_first_layer=False):
"""Basic 3 X 3 X 3 convolution blocks. Extended from raghakot's 2D impl."""
def f(input):
if is_first_block_of_first_layer:
# don't repeat bn->relu since we just did bn->relu->maxpool
conv_1_1 = Conv3D(filters=filters, kernel_size=(1, 1, 1),
strides=strides, padding="same",
kernel_initializer="he_normal",
kernel_regularizer=kernel_regularizer
)(input)
else:
conv_1_1 = _bn_relu_conv3d(filters=filters, kernel_size=(1, 1, 1),
strides=strides,
kernel_regularizer=kernel_regularizer
)(input)
conv_3_3 = _bn_relu_conv3d(filters=filters, kernel_size=(3, 3, 3),
kernel_regularizer=kernel_regularizer
)(conv_1_1)
residual = _bn_relu_conv3d(filters=filters * 4, kernel_size=(1, 1, 1),
kernel_regularizer=kernel_regularizer
)(conv_3_3)
return _shortcut3d(input, residual)
return f
def _handle_data_format():
global DIM1_AXIS
global DIM2_AXIS
global DIM3_AXIS
global CHANNEL_AXIS
if K.image_data_format() == 'channels_last':
DIM1_AXIS = 1
DIM2_AXIS = 2
DIM3_AXIS = 3
CHANNEL_AXIS = 4
else:
CHANNEL_AXIS = 1
DIM1_AXIS = 2
DIM2_AXIS = 3
DIM3_AXIS = 4
def _get_block(identifier):
if isinstance(identifier, six.string_types):
res = globals().get(identifier)
if not res:
raise ValueError('Invalid {}'.format(identifier))
return res
return identifier
class Resnet3DBuilder(object):
"""ResNet3D."""
@staticmethod
def build(input_shape, num_outputs, block_fn, repetitions, reg_factor):
"""Instantiate a vanilla ResNet3D keras model.
# Arguments
input_shape: Tuple of input shape in the format
(conv_dim1, conv_dim2, conv_dim3, channels) if dim_ordering='tf'
(filter, conv_dim1, conv_dim2, conv_dim3) if dim_ordering='th'
num_outputs: The number of outputs at the final softmax layer
block_fn: Unit block to use {'basic_block', 'bottlenack_block'}
repetitions: Repetitions of unit blocks
# Returns
model: a 3D ResNet model that takes a 5D tensor (volumetric images
in batch) as input and returns a 1D vector (prediction) as output.
"""
_handle_data_format()
if len(input_shape) != 4:
raise ValueError("Input shape should be a tuple "
"(conv_dim1, conv_dim2, conv_dim3, channels) "
"for tensorflow as backend or "
"(channels, conv_dim1, conv_dim2, conv_dim3) "
"for theano as backend")
block_fn = _get_block(block_fn)
input = Input(shape=input_shape)
# first conv
conv1 = _conv_bn_relu3D(filters=64, kernel_size=(7, 7, 7),
strides=(2, 2, 2),
kernel_regularizer=l2(reg_factor)
)(input)
pool1 = MaxPooling3D(pool_size=(3, 3, 3), strides=(2, 2, 2),
padding="same")(conv1)
# repeat blocks
block = pool1
filters = 64
for i, r in enumerate(repetitions):
block = _residual_block3d(block_fn, filters=filters,
kernel_regularizer=l2(reg_factor),
repetitions=r, is_first_layer=(i == 0)
)(block)
filters *= 2
# last activation
block_output = _bn_relu(block)
# average poll and classification
pool2 = AveragePooling3D(pool_size=(block.shape[DIM1_AXIS],
block.shape[DIM2_AXIS],
block.shape[DIM3_AXIS]),
strides=(1, 1, 1))(block_output)
flatten1 = Flatten()(pool2)
if num_outputs > 1:
dense = Dense(units=num_outputs,
kernel_initializer="he_normal",
activation="softmax",
kernel_regularizer=l2(reg_factor))(flatten1)
else:
dense = Dense(units=num_outputs,
kernel_initializer="he_normal",
activation="sigmoid",
kernel_regularizer=l2(reg_factor))(flatten1)
model = Model(inputs=input, outputs=dense)
return model
@staticmethod
def build_resnet_18(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 18."""
return Resnet3DBuilder.build(input_shape, num_outputs, basic_block,
[2, 2, 2, 2], reg_factor=reg_factor)
@staticmethod
def build_resnet_34(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 34."""
return Resnet3DBuilder.build(input_shape, num_outputs, basic_block,
[3, 4, 6, 3], reg_factor=reg_factor)
@staticmethod
def build_resnet_50(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 50."""
return Resnet3DBuilder.build(input_shape, num_outputs, bottleneck,
[3, 4, 6, 3], reg_factor=reg_factor)
@staticmethod
def build_resnet_101(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 101."""
return Resnet3DBuilder.build(input_shape, num_outputs, bottleneck,
[3, 4, 23, 3], reg_factor=reg_factor)
@staticmethod
def build_resnet_152(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 152."""
return Resnet3DBuilder.build(input_shape, num_outputs, bottleneck,
[3, 8, 36, 3], reg_factor=reg_factor)
当我在视频上训练网络时,出现以下错误:
Error: unhashable type: 'Dimension'
File "<ipython-input-29-788d091a6763>", line 1961, in main
trained_model_name)
File "<ipython-input-29-788d091a6763>", line 1805, in train
model = train_load_model(model_type, training_condition, sample_input.shape, nb_classes)
File "<ipython-input-29-788d091a6763>", line 1684, in train_load_model
model = Resnet3DBuilder.build_resnet_50((96, 96, 96, 1), 20)
File "<ipython-input-29-788d091a6763>", line 1543, in build_resnet_50
[3, 4, 6, 3], reg_factor=reg_factor)
File "<ipython-input-29-788d091a6763>", line 1501, in build
)(block)
File "<ipython-input-29-788d091a6763>", line 1372, in f
)(input)
File "<ipython-input-29-788d091a6763>", line 1419, in f
)(input)
File "<ipython-input-29-788d091a6763>", line 1334, in f
activation = _bn_relu(input)
File "<ipython-input-29-788d091a6763>", line 1300, in _bn_relu
norm = BatchNormalization(axis=CHANNEL_AXIS)(input)
File "/usr/local/lib/python3.6/dist-packages/keras/engine/base_layer.py", line 440, in __call__
self.assert_input_compatibility(inputs)
File "/usr/local/lib/python3.6/dist-packages/keras/engine/base_layer.py", line 345, in assert_input_compatibility
x_shape[int(axis)] not in {value, None}):
我有以下 Tensorflow、Keras 和 Python 版本:
- 张量流:1.15.0
- 凯拉斯:2.2.4
- Python : 3.6
你能告诉我如何解决这个错误吗?我看到将 Dimension 转换为 int 解决了其他地方的问题,但我不知道我应该在这里转换什么。
要解决这个问题,我们需要将每个形状访问转换为 int。
示例:
residual.shape[CHANNEL_AXIS]
需要重写int(residual.shape[CHANNEL_AXIS])
新版代码如下:
## Resnet 3D architecture
# Taken from https://github.com/JihongJu/keras-resnet3d/blob/master/resnet3d/resnet3d.py
def _bn_relu(input):
"""Helper to build a BN -> relu block (by @raghakot)."""
norm = BatchNormalization(axis=CHANNEL_AXIS)(input)
return Activation("relu")(norm)
def _conv_bn_relu3D(**conv_params):
filters = conv_params["filters"]
kernel_size = conv_params["kernel_size"]
strides = conv_params.setdefault("strides", (1, 1, 1))
kernel_initializer = conv_params.setdefault(
"kernel_initializer", "he_normal")
padding = conv_params.setdefault("padding", "same")
kernel_regularizer = conv_params.setdefault("kernel_regularizer",
l2(1e-4))
def f(input):
conv = Conv3D(filters=filters, kernel_size=kernel_size,
strides=strides, kernel_initializer=kernel_initializer,
padding=padding,
kernel_regularizer=kernel_regularizer)(input)
return _bn_relu(conv)
return f
def _bn_relu_conv3d(**conv_params):
"""Helper to build a BN -> relu -> conv3d block."""
filters = conv_params["filters"]
kernel_size = conv_params["kernel_size"]
strides = conv_params.setdefault("strides", (1, 1, 1))
kernel_initializer = conv_params.setdefault("kernel_initializer",
"he_normal")
padding = conv_params.setdefault("padding", "same")
kernel_regularizer = conv_params.setdefault("kernel_regularizer",
l2(1e-4))
def f(input):
activation = _bn_relu(input)
return Conv3D(filters=filters, kernel_size=kernel_size,
strides=strides, kernel_initializer=kernel_initializer,
padding=padding,
kernel_regularizer=kernel_regularizer)(activation)
return f
def _shortcut3d(input, residual):
"""3D shortcut to match input and residual and merges them with "sum"."""
stride_dim1 = math.ceil(int(input.shape[DIM1_AXIS]) \
/ int(residual.shape[DIM1_AXIS]))
stride_dim2 = math.ceil(int(input.shape[DIM2_AXIS]) \
/ int(residual.shape[DIM2_AXIS]))
stride_dim3 = math.ceil(int(input.shape[DIM3_AXIS]) \
/ int(residual.shape[DIM3_AXIS]))
equal_channels = int(residual.shape[CHANNEL_AXIS]) \
== int(input.shape[CHANNEL_AXIS])
shortcut = input
if stride_dim1 > 1 or stride_dim2 > 1 or stride_dim3 > 1 \
or not equal_channels:
shortcut = Conv3D(
filters=int(residual.shape[CHANNEL_AXIS]),
kernel_size=(1, 1, 1),
strides=(stride_dim1, stride_dim2, stride_dim3),
kernel_initializer="he_normal", padding="valid",
kernel_regularizer=l2(1e-4)
)(input)
return add([shortcut, residual])
def _residual_block3d(block_function, filters, kernel_regularizer, repetitions,
is_first_layer=False):
def f(input):
for i in range(repetitions):
strides = (1, 1, 1)
if i == 0 and not is_first_layer:
strides = (2, 2, 2)
input = block_function(filters=filters, strides=strides,
kernel_regularizer=kernel_regularizer,
is_first_block_of_first_layer=(
is_first_layer and i == 0)
)(input)
return input
return f
def basic_block(filters, strides=(1, 1, 1), kernel_regularizer=l2(1e-4),
is_first_block_of_first_layer=False):
"""Basic 3 X 3 X 3 convolution blocks. Extended from raghakot's 2D impl."""
def f(input):
if is_first_block_of_first_layer:
# don't repeat bn->relu since we just did bn->relu->maxpool
conv1 = Conv3D(filters=filters, kernel_size=(3, 3, 3),
strides=strides, padding="same",
kernel_initializer="he_normal",
kernel_regularizer=kernel_regularizer
)(input)
else:
conv1 = _bn_relu_conv3d(filters=filters,
kernel_size=(3, 3, 3),
strides=strides,
kernel_regularizer=kernel_regularizer
)(input)
residual = _bn_relu_conv3d(filters=filters, kernel_size=(3, 3, 3),
kernel_regularizer=kernel_regularizer
)(conv1)
return _shortcut3d(input, residual)
return f
def bottleneck(filters, strides=(1, 1, 1), kernel_regularizer=l2(1e-4),
is_first_block_of_first_layer=False):
"""Basic 3 X 3 X 3 convolution blocks. Extended from raghakot's 2D impl."""
def f(input):
if is_first_block_of_first_layer:
# don't repeat bn->relu since we just did bn->relu->maxpool
conv_1_1 = Conv3D(filters=filters, kernel_size=(1, 1, 1),
strides=strides, padding="same",
kernel_initializer="he_normal",
kernel_regularizer=kernel_regularizer
)(input)
else:
conv_1_1 = _bn_relu_conv3d(filters=filters, kernel_size=(1, 1, 1),
strides=strides,
kernel_regularizer=kernel_regularizer
)(input)
conv_3_3 = _bn_relu_conv3d(filters=filters, kernel_size=(3, 3, 3),
kernel_regularizer=kernel_regularizer
)(conv_1_1)
residual = _bn_relu_conv3d(filters=filters * 4, kernel_size=(1, 1, 1),
kernel_regularizer=kernel_regularizer
)(conv_3_3)
return _shortcut3d(input, residual)
return f
def _handle_data_format():
global DIM1_AXIS
global DIM2_AXIS
global DIM3_AXIS
global CHANNEL_AXIS
if K.image_data_format() == 'channels_last':
print("here CHANNELS last")
DIM1_AXIS = 1
DIM2_AXIS = 2
DIM3_AXIS = 3
CHANNEL_AXIS = 4
else:
CHANNEL_AXIS = 1
DIM1_AXIS = 2
DIM2_AXIS = 3
DIM3_AXIS = 4
def _get_block(identifier):
if isinstance(identifier, six.string_types):
res = globals().get(identifier)
if not res:
raise ValueError('Invalid {}'.format(identifier))
return res
return identifier
class Resnet3DBuilder(object):
"""ResNet3D."""
@staticmethod
def build(input_shape, num_outputs, block_fn, repetitions, reg_factor):
"""Instantiate a vanilla ResNet3D keras model.
# Arguments
input_shape: Tuple of input shape in the format
(conv_dim1, conv_dim2, conv_dim3, channels) if dim_ordering='tf'
(filter, conv_dim1, conv_dim2, conv_dim3) if dim_ordering='th'
num_outputs: The number of outputs at the final softmax layer
block_fn: Unit block to use {'basic_block', 'bottlenack_block'}
repetitions: Repetitions of unit blocks
# Returns
model: a 3D ResNet model that takes a 5D tensor (volumetric images
in batch) as input and returns a 1D vector (prediction) as output.
"""
_handle_data_format()
if len(input_shape) != 4:
raise ValueError("Input shape should be a tuple "
"(conv_dim1, conv_dim2, conv_dim3, channels) "
"for tensorflow as backend or "
"(channels, conv_dim1, conv_dim2, conv_dim3) "
"for theano as backend")
block_fn = _get_block(block_fn)
input = Input(shape=input_shape)
# first conv
conv1 = _conv_bn_relu3D(filters=64, kernel_size=(7, 7, 7),
strides=(2, 2, 2),
kernel_regularizer=l2(reg_factor)
)(input)
pool1 = MaxPooling3D(pool_size=(3, 3, 3), strides=(2, 2, 2),
padding="same")(conv1)
# repeat blocks
block = pool1
filters = 64
for i, r in enumerate(repetitions):
block = _residual_block3d(block_fn, filters=filters,
kernel_regularizer=l2(reg_factor),
repetitions=r, is_first_layer=(i == 0)
)(block)
filters *= 2
# last activation
block_output = _bn_relu(block)
# average poll and classification
pool2 = AveragePooling3D(pool_size=(int(block.shape[DIM1_AXIS]),
int(block.shape[DIM2_AXIS]),
int(block.shape[DIM3_AXIS])),
strides=(1, 1, 1))(block_output)
flatten1 = Flatten()(pool2)
if num_outputs > 1:
dense = Dense(units=num_outputs,
kernel_initializer="he_normal",
activation="softmax",
kernel_regularizer=l2(reg_factor))(flatten1)
else:
dense = Dense(units=num_outputs,
kernel_initializer="he_normal",
activation="sigmoid",
kernel_regularizer=l2(reg_factor))(flatten1)
model = Model(inputs=input, outputs=dense)
return model
@staticmethod
def build_resnet_18(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 18."""
return Resnet3DBuilder.build(input_shape, num_outputs, basic_block,
[2, 2, 2, 2], reg_factor=reg_factor)
@staticmethod
def build_resnet_34(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 34."""
return Resnet3DBuilder.build(input_shape, num_outputs, basic_block,
[3, 4, 6, 3], reg_factor=reg_factor)
@staticmethod
def build_resnet_50(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 50."""
return Resnet3DBuilder.build(input_shape, num_outputs, bottleneck,
[3, 4, 6, 3], reg_factor=reg_factor)
@staticmethod
def build_resnet_101(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 101."""
return Resnet3DBuilder.build(input_shape, num_outputs, bottleneck,
[3, 4, 23, 3], reg_factor=reg_factor)
@staticmethod
def build_resnet_152(input_shape, num_outputs, reg_factor=1e-4):
"""Build resnet 152."""
return Resnet3DBuilder.build(input_shape, num_outputs, bottleneck,
[3, 8, 36, 3], reg_factor=reg_factor)
最新版本的 Keras 和 Tensorflow 不会出现此问题,但我需要保留这两个库的旧版本,因为我的其他脚本无法 运行 在最新版本的 Tensorflow/Keras.