Spark Structured Streaming 读取嵌套的 Kafka Connect jsonConverter 消息

Spark Structured Streaming to read nested Kafka Connect jsonConverter message

我已经使用 KafkaConnect 文件脉冲连接器 1.5.3 摄取了 xml 文件 然后我想用Spark Streaming读到parse/flatten它。因为它是相当嵌套的。

字符串 我读出kafka(我用消费者控制台读出这个,并在payload之前放一个Enter/new行插图)如下所示:

{
"schema":{"type":"struct","fields":[{"type":"struct","fields":[{"type":"string","optional":true,"field":"city"},{"type":"array","items":{"type":"struct","fields":[{"type":"array","items":{"type":"struct","fields":[{"type":"string","optional":true,"field":"unit"},{"type":"string","optional":true,"field":"value"}],"optional":true,"name":"Value"},"optional":true,"field":"value"}],"optional":true,"name":"ForcedArrayType"},"optional":true,"field":"forcedArrayField"},{"type":"string","optional":true,"field":"lastField"}],"optional":true,"name":"Data","field":"data"}],"optional":true}

,"payload":{"data":{"city":"someCity","forcedArrayField":[{"value":[{"unit":"unitField1","value":"123"},{"unit":"unitField1","value":"456"}]}],"lastField":"2020-08-02T18:02:00"}}
}

数据类型 我尝试了:

    StructType schema = new StructType();
    schema = schema.add( "schema", StringType, false);
    schema = schema.add( "payload", StringType, false);

    StructType Data = new StructType();
    StructType ValueArray = new StructType(new StructField[]{
            new StructField("unit", StringType,true,Metadata.empty()),
            new StructField("value", StringType,true,Metadata.empty())
    });
    StructType ForcedArrayType = new StructType(new StructField[]{
            new StructField("valueArray", ValueArray,true,Metadata.empty())
    });

    Data = Data.add("city",StringType,true);
    Data = Data.add("forcedArrayField",ForcedArrayType,true);
    Data = Data.add("lastField",StringType,true);

    StructType Record = new StructType();
    Record = Record.add("data", Data, false);

查询 我尝试了:

        //below worked for payload
        Dataset<Row> parsePayload = lines
                .selectExpr("cast (value as string) as json")
                .select(functions.from_json(functions.col("json"), schema=schema).as("schemaAndPayload"))
                .select("schemaAndPayload.payload").as("payload");

        System.out.println(parsePayload.isStreaming());

        //below makes the output empty:
        Dataset<Row> parseValue = parsePayload.select(functions.from_json(functions.col("payload"), Record).as("cols"))
                .select(functions.col("cols.data.city"));
//.select(functions.col("cols.*"));

        StreamingQuery query = parseValue
                .writeStream()
                .format("console")
                .outputMode(OutputMode.Append())
                .start();
        query.awaitTermination();

当我输出 parsePayload 流时,我可以看到数据(仍然是 json 结构),但是当我想要 select certain/all 字段时,就像上面的城市一样。它是空的。

需要帮助 原因数据类型是否定义错误?或者查询有误?

Ps。 在控制台上,当我尝试输出 'parsePayload' 而不是 'parseValue' 时,它显示了一些数据,这让我认为 'payload' 部分有效。

 |{"data":{"city":"...|
...

您的架构定义有误。 payloadschema 可能不是 column/field 将其作为静态 Json (Spark.read.json) 读取并获取模式,然后在结构化流中使用它。

您的架构定义似乎不完全正确。我正在复制您的问题,并且能够使用以下架构

解析 JSON
val payloadSchema = new StructType()
  .add("data", new StructType()
    .add("city", StringType)
    .add("forcedArrayField", ArrayType(new StructType()
      .add("value", ArrayType(new StructType()
        .add("unit", StringType)
        .add("value", StringType)))))
    .add("lastField", StringType))

当我随后访问各个字段时,我使用了以下选择:

val parsePayload = df
    .selectExpr("cast (value as string) as json")
    .select(functions.from_json(functions.col("json"), schema).as("schemaAndPayload"))
    .select("schemaAndPayload.payload").as("payload")
    .select(functions.from_json(functions.col("payload"), payloadSchema).as("cols"))
    .select(col("cols.data.city").as("city"), explode(col("cols.data.forcedArrayField")).as("forcedArrayField"), col("cols.data.lastField").as("lastField"))
    .select(col("city"), explode(col("forcedArrayField.value").as("middleFields")), col("lastField"))

这给出了输出

+--------+-----------------+-------------------+
|    city|              col|          lastField|
+--------+-----------------+-------------------+
|someCity|[unitField1, 123]|2020-08-02T18:02:00|
|someCity|[unitField1, 456]|2020-08-02T18:02:00|
+--------+-----------------+-------------------+