透视/重塑数据

Pivot / Reshape data

我的示例数据如下所示:

 data <- read.table(header=T, text='
  pid     measurement1     Tdays1     measurement2      Tdays2     measurement3     Tdays3  measurment4    Tdays4 
   1         1356           1435         1483            1405         1563           1374       NA           NA     
   2         943            1848         1173            1818         1300           1785       NA           NA     
   3         1590           185          NA              NA           NA             NA         1585         294    
   4         130            72           443             70           NA             NA         136          79     
   4         140            82           NA              NA           NA             NA         756          89     
   4         220            126          266             124          NA             NA         703          128    
   4         166            159          213             156          476            145        776          166    
   4         380            189          583             173          NA             NA         586          203    
   4         353            231          510             222          656            217        526          240    
   4         180            268          NA              NA           NA             NA         NA           NA       
   4         NA             NA           NA              NA           NA             NA         580          278    
   4         571            334          596             303          816            289        483          371    
  ')

现在我希望它看起来像这样:

PID     Time (days)   Value
 1       1435         1356
 1       1405         1483
 1       1374         1563
 2       1848         943
 2       1818         1173
 2       1785         1300
 3       185          1590
...      ...          ... 

我将如何到达那里?我查过一些关于宽格式到长格式的东西,但它似乎并没有解决问题。 亲切的问候,并提前感谢您。

这是一个基本的 R 选项

u <- cbind(
  data[1],
  do.call(
    rbind,
    lapply(
      split.default(data[-1], ceiling(seq_along(data[-1]) / 2)),
      setNames,
      c("Value", "Time")
    )
  )
)

out <- `row.names<-`(
  subset(
    x <- u[order(u$pid), ],
    complete.cases(x)
  ), NULL
)

这样

> out
   pid Value Time
1    1  1356 1435
2    1  1483 1405
3    1  1563 1374
4    2   943 1848
5    2  1173 1818
6    2  1300 1785
7    3  1590  185
8    3  1585  294
9    4   130   72
10   4   140   82
11   4   220  126
12   4   166  159
13   4   380  189
14   4   353  231
15   4   180  268
16   4   571  334
17   4   443   70
18   4   266  124
19   4   213  156
20   4   583  173
21   4   510  222
22   4   596  303
23   4   476  145
24   4   656  217
25   4   816  289
26   4   136   79
27   4   756   89
28   4   703  128
29   4   776  166
30   4   586  203
31   4   526  240
32   4   580  278
33   4   483  371

选项pivot_longer

library(dplyr)
library(tidyr)
names(data)[8] <- "measurement4"
data %>%
    pivot_longer(cols = -pid, names_to = c('.value', 'grp'),
    names_sep = "(?<=[a-z])(?=[0-9])", values_drop_na = TRUE) %>% select(-grp)
# A tibble: 33 x 3
#     pid measurement Tdays
#   <int>       <int> <int>
# 1     1        1356  1435
# 2     1        1483  1405
# 3     1        1563  1374
# 4     2         943  1848
# 5     2        1173  1818
# 6     2        1300  1785
# 7     3        1590   185
# 8     3        1585   294
# 9     4         130    72
#10     4         443    70
# … with 23 more rows