如何仅考虑 r 中交易日期之前的最后 6 个月计算每个帐户的网络度量?

How can I calculate network measures for each account only considering the last 6 month period prior to the transaction date in r?

这是我的交易数据:

data:

id          from    to          date        amount  
<int>       <fctr>  <fctr>      <date>      <dbl>
19521       6644    6934        2005-01-01  700.0
19524       6753    8456        2005-01-01  600.0
19523       9242    9333        2005-01-01  1000.0
…           …       …           …           …
1056317     7819    7454        2010-12-31  60.2
1056318     6164    7497        2010-12-31  107.5
1056319     7533    7492        2010-12-31  164.1

之前问过,需要在指定的时间间隔内形成网络,然后对网络进行网络措施。 现在,我需要更进一步。
我想做的事情如下:

PS:

  • Let's consider row 1, row 2 and row 3. Since the dates are the same, the networks that will be created by data whose dates lie in the range "2004-07-05"-"2005-01-01" will be exactly the same for all the three rows. However, since network measures such as degree centr. or betweenness centr. will be added to the data according to the accounts in from column, these network measures for 6644, 6753 and 9242 will more likely be different from each other.
  • Also, the boundaries of date intervals taken into account when we extract data between a date range to form a network. For example, the very first date in my data is "2005-01-01"( and there are 4 transactions made in that date in fact). But, let's say there is only one observation(transaction) on this very first date "2005-01-01" and there's not any observation before this date, now we want to create a network of data ranging between"2004-07-05"-"2005-01-01". Since as I said the boundaries also count, the only observation we can take -in this specified date range- to form the network is the one with date "2005-01-01". So, since a transaction consists of two accounts, thus only these two accounts(nodes) will be present in the network. So, at the end of the day, one observation is sufficient to build a network and calculate network metrics on it.

数据样本的dput()输出:

structure(list(id = c(18529L, 13742L, 9913L, 956L, 2557L, 1602L, 
18669L, 35900L, 48667L, 51341L, 53713L, 60126L, 60545L, 65113L, 
66783L, 83324L, 87614L, 88898L, 89874L, 94765L, 100277L, 101587L, 
103444L, 108414L, 113319L, 121516L, 126607L, 130170L, 131771L, 
135002L, 149431L, 157403L, 157645L, 158831L, 162597L, 162680L, 
163901L, 165044L, 167082L, 168562L, 168940L, 172578L, 173031L, 
173267L, 177507L, 179167L, 182612L, 183499L, 188171L, 189625L, 
193940L, 198764L, 199342L, 200134L, 203328L, 203763L, 204733L, 
205651L, 209672L, 210242L, 210979L, 214532L, 214741L, 215738L, 
216709L, 220828L, 222140L, 222905L, 226133L, 226527L, 227160L, 
228193L, 231782L, 232454L, 233774L, 237836L, 237837L, 238860L, 
240223L, 245032L, 246673L, 247561L, 251611L, 251696L, 252663L, 
254410L, 255126L, 255230L, 258484L, 258485L, 259309L, 259910L, 
260542L, 262091L, 264462L, 264887L, 264888L, 266125L, 268574L, 
272959L, 273519L, 274064L, 274276L, 275121L, 277368L, 279699L, 
280009L, 280771L, 283004L, 285434L, 286555L, 287519L, 287672L, 
292464L, 292967L, 293761L, 298688L, 299828L, 301001L, 305967L, 
306733L, 307195L, 307690L, 312021L, 312387L, 313201L, 313617L, 
314821L, 319220L, 319431L, 319896L, 319898L, 320552L, 321169L, 
321489L, 323363L, 326642L, 327878L, 329300L, 329693L, 334956L, 
336257L, 337051L, 337453L, 341921L, 342486L, 343779L, 345045L, 
346051L, 350569L, 351775L, 351776L, 351982L, 352926L, 357909L, 
359279L, 360537L, 360625L, 360626L, 360893L, 366453L, 367527L, 
369371L, 372062L, 372399L, 374143L, 375554L, 376953L, 383066L, 
383834L, 388124L, 390941L, 391457L, 392392L, 393886L, 394712L, 
400161L, 400163L, 400293L, 400947L, 408385L, 408433L, 408770L, 
409130L, 409884L, 409957L, 411094L, 411473L, 417931L, 417933L, 
423987L, 426306L, 427859L, 427933L, 429862L, 437299L, 437302L, 
439673L, 440086L, 442868L, 445391L, 447715L, 449318L, 452670L, 
453274L, 458907L, 462533L, 463977L, 463978L, 465277L, 466227L, 
466334L, 468656L, 468984L, 469658L, 470878L, 471085L, 475595L, 
479825L, 480706L, 482107L, 482396L, 484029L, 487872L, 489049L, 
489244L, 491078L, 492645L, 494182L, 494770L, 499833L, 501560L, 
503281L, 506762L, 507155L, 510635L, 510636L, 511456L, 518516L, 
520256L, 522059L, 523879L, 526605L, 531419L, 541120L, 542984L, 
543255L, 544835L, 552145L, 552249L, 552599L, 556641L, 558437L, 
560182L, 560316L, 561661L, 562757L, 564655L, 566807L, 568924L, 
569579L, 572454L, 575342L, 583113L, 584735L, 586566L, 588467L, 
588650L, 590397L, 593263L, 596176L, 596991L, 598516L, 600036L, 
600890L, 601217L, 605716L, 608700L, 608986L, 610955L, 611554L, 
612369L, 612912L, 614413L, 614581L, 615689L, 617839L, 621218L, 
625643L, 631926L, 632402L, 632634L, 632971L, 633878L, 634037L, 
635879L, 635881L, 641722L, 644074L, 644363L, 647383L, 648449L, 
648705L, 651123L, 653520L, 653632L, 655184L, 657159L, 659304L, 
659383L, 664298L, 667950L, 670871L, 671575L, 674758L, 679149L, 
681217L, 683256L, 686397L, 690087L, 692048L, 693581L, 698475L, 
702839L, 703263L, 705359L, 707965L, 708472L, 709573L, 711538L, 
717942L, 724743L, 728282L, 728648L, 729681L, 731550L, 733199L, 
733615L, 735554L, 736414L, 738424L, 738745L, 740422L, 741730L, 
742188L, 744849L, 749384L, 752006L, 752873L, 755237L, 757632L, 
759299L, 759719L, 761893L, 763247L, 766302L, 773620L, 773833L, 
774422L, 776563L, 778547L, 779605L, 779717L, 781104L, 785381L, 
787524L, 796458L, 798356L, 799486L, 800502L, 801384L, 801958L, 
802663L, 806221L, 809515L, 810634L, 811948L, 811977L, 814180L, 
814464L, 817624L, 818373L, 823705L, 825916L, 827123L, 828005L, 
830594L, 835990L, 836925L, 837301L, 842136L, 848963L, 849984L, 
851164L, 853383L, 856965L, 857455L, 862780L, 868448L, 869178L, 
871528L, 872324L, 873608L, 874589L, 876773L, 877903L, 879305L, 
884153L, 888738L, 888830L, 889369L, 890395L, 891820L, 894176L, 
901068L, 902416L, 904059L, 904624L, 906822L, 916201L, 926644L, 
927983L, 929856L, 930224L, 931276L, 932214L, 932332L, 934410L, 
934979L, 935556L, 937221L, 937603L, 941771L, 944454L, 946767L, 
950291L, 950302L, 951398L, 953147L, 953606L, 955816L, 957054L, 
957102L, 957984L, 967407L, 973595L, 974085L, 978109L, 979048L, 
979900L, 981315L, 983423L, 985428L, 985680L, 986613L, 992879L, 
997651L, 999781L, 1004742L, 1006958L, 1009140L, 1009227L, 1009644L, 
1013484L, 1018535L, 1019671L, 1030067L, 1030636L, 1032335L, 1033712L, 
1035096L, 1036537L, 1038682L, 1042439L, 1045492L, 1050247L, 1054737L, 
1056136L), from = c("5370", "5370", "5370", "8605", "5370", "6390", 
"5370", "5370", "8934", "5370", "5635", "6046", "5680", "8026", 
"9037", "5370", "7816", "8046", "5492", "8756", "5370", "9254", 
"5370", "5370", "7078", "6615", "5370", "9817", "8228", "8822", 
"5735", "7058", "5370", "8667", "9315", "6053", "7990", "8247", 
"8165", "5656", "9261", "5929", "8251", "5370", "6725", "5370", 
"6004", "7022", "7442", "5370", "8679", "6491", "7078", "5370", 
"5370", "5370", "5658", "5370", "9296", "8386", "5370", "5370", 
"5370", "9535", "5370", "7541", "5370", "9621", "5370", "7158", 
"8240", "5370", "5370", "8025", "5370", "5370", "5370", "6989", 
"5370", "7059", "5370", "5370", "5370", "9121", "5608", "5370", 
"5370", "7551", "5370", "5370", "5370", "5370", "9163", "9362", 
"6072", "5370", "5370", "5370", "5370", "5370", "5370", "6169", 
"5370", "5370", "7034", "8313", "7930", "7151", "8914", "5370", 
"9277", "5370", "5370", "6376", "5939", "6253", "5370", "8629", 
"5370", "6778", "5370", "5370", "7783", "5370", "5370", "5370", 
"7319", "5370", "6644", "9221", "6820", "5370", "5370", "5370", 
"6326", "5370", "5370", "6495", "5370", "5370", "7818", "9788", 
"6831", "5370", "7986", "5370", "5700", "5370", "5679", "7074", 
"5370", "6125", "5370", "6806", "5370", "5841", "5370", "5370", 
"5370", "5370", "7177", "8369", "5370", "7420", "9686", "5370", 
"5875", "5370", "6196", "5370", "7538", "5370", "5370", "8761", 
"5370", "9837", "5370", "6214", "7755", "5370", "7824", "5370", 
"5370", "5370", "8115", "8941", "8582", "5370", "5583", "5370", 
"5990", "5370", "7497", "5370", "5370", "8336", "5370", "5370", 
"9847", "7269", "8479", "5370", "6973", "5370", "5370", "5870", 
"9500", "5370", "9406", "6806", "6644", "6255", "9135", "5370", 
"7008", "5370", "8197", "5370", "5370", "5370", "5921", "8951", 
"5370", "8726", "8384", "5370", "9446", "5370", "5370", "8435", 
"5370", "7220", "5370", "9427", "7664", "5370", "6996", "8811", 
"6455", "5370", "6022", "5370", "7827", "7290", "5370", "5409", 
"6988", "5370", "5698", "5844", "8754", "5370", "5370", "5370", 
"5370", "9003", "5370", "9024", "5370", "5370", "5370", "5370", 
"8650", "5370", "5370", "5370", "5924", "7815", "5370", "6876", 
"8445", "8524", "6799", "6951", "7606", "5950", "9421", "5370", 
"5370", "9301", "9409", "8810", "5370", "8892", "5370", "8843", 
"5370", "6891", "5370", "5370", "5370", "5370", "5370", "9869", 
"7880", "5370", "5370", "8346", "7427", "8308", "6452", "7104", 
"5370", "7228", "5370", "7694", "5370", "6296", "5370", "8624", 
"5393", "5982", "8619", "8494", "6354", "5370", "8954", "5370", 
"5370", "5370", "8356", "5370", "5370", "5370", "5370", "6342", 
"5370", "5636", "5370", "5370", "6195", "7265", "5370", "5370", 
"5370", "5370", "7504", "9289", "6814", "5370", "5370", "5370", 
"6649", "9706", "5370", "7385", "8110", "6359", "6557", "6338", 
"5370", "5370", "7937", "9238", "5370", "5370", "6511", "5370", 
"5370", "9038", "5370", "9646", "5370", "5370", "5370", "5516", 
"5370", "5370", "5370", "6020", "7005", "9824", "5370", "5370", 
"5370", "5370", "7131", "6629", "5370", "7683", "5370", "9720", 
"5370", "9586", "5370", "5370", "5370", "8984", "5505", "5789", 
"5370", "5370", "5370", "7272", "5370", "5370", "5370", "5907", 
"5370", "9731", "5370", "5370", "8359", "5370", "7879", "8048", 
"5370", "9458", "7931", "7918", "5983", "5939", "6592", "5370", 
"5765", "5370", "5370", "5898", "5370", "9558", "9372", "5370", 
"5936", "9580", "5370", "8458", "5370", "5370", "9692", "5370", 
"6290", "5703", "5747", "9788", "6540", "8600", "7420", "6459", 
"5370", "5370", "6768", "7523", "5370", "5370", "9177", "5370", 
"8898", "7257", "5370", "5370", "6395", "5370", "7168", "7671", 
"6158", "5372", "7983", "8919", "5370", "7614", "5370", "8631", 
"5370", "8342", "7227", "5370", "5370", "5370", "6700", "5370", 
"5370", "7078", "7349", "5370", "8210", "9427", "5370", "5613"
), to = c("9356", "5605", "8567", "5370", "5636", "5370", "8933", 
"8483", "5370", "7626", "5370", "5370", "5370", "5370", "5370", 
"9676", "5370", "5370", "5370", "5370", "9105", "5370", "9772", 
"6979", "5370", "5370", "7564", "5370", "5370", "5370", "5370", 
"5370", "8744", "5370", "5370", "5370", "5370", "5370", "5370", 
"5370", "5370", "5370", "5370", "7318", "5370", "8433", "5370", 
"5370", "5370", "7122", "5370", "5370", "5370", "8566", "6728", 
"9689", "5370", "8342", "5370", "5370", "5614", "5596", "5953", 
"5370", "7336", "5370", "7247", "5370", "7291", "5370", "5370", 
"6282", "7236", "5370", "8866", "8613", "9247", "5370", "6767", 
"5370", "9273", "7320", "9533", "5370", "5370", "8930", "9343", 
"5370", "9499", "7693", "7830", "5392", "5370", "5370", "5370", 
"7497", "8516", "9023", "7310", "8939", "9736", "5370", "8679", 
"5585", "5370", "5370", "5370", "5370", "5370", "7691", "5370", 
"7332", "9476", "5370", "5370", "5370", "9239", "5370", "6417", 
"5370", "8445", "6016", "5370", "7933", "6929", "7437", "5370", 
"6672", "5370", "5370", "5370", "9118", "6640", "7429", "5370", 
"9149", "7979", "5370", "5716", "9405", "5370", "5370", "5370", 
"6433", "5370", "8747", "5370", "6675", "5370", "5370", "6621", 
"5370", "8237", "5370", "6934", "5370", "9361", "7366", "8699", 
"9564", "5370", "5370", "5373", "5370", "5370", "8457", "5370", 
"6650", "5370", "7033", "5370", "9807", "6984", "5370", "6269", 
"5370", "6510", "5370", "5370", "9001", "5370", "6445", "6874", 
"8926", "5370", "5370", "5370", "9188", "5370", "5660", "5370", 
"6061", "5370", "7523", "8130", "5370", "9570", "6142", "5370", 
"5370", "5370", "9272", "5370", "8558", "7020", "5370", "5370", 
"8890", "5370", "5370", "5370", "5370", "5370", "5684", "5370", 
"6282", "5370", "8422", "7715", "6404", "5370", "5370", "7182", 
"5370", "5370", "9635", "5370", "7395", "9352", "5370", "6450", 
"5370", "5640", "5370", "5370", "8654", "5370", "5370", "5370", 
"6601", "5370", "6029", "5370", "5370", "9251", "5370", "5370", 
"9809", "5370", "5370", "5370", "7687", "5417", "8629", "6171", 
"5370", "8927", "5370", "9675", "8547", "8601", "6474", "5370", 
"9295", "9699", "7161", "5370", "5370", "9359", "5370", "5370", 
"5370", "5370", "5370", "5370", "5370", "5370", "8142", "7801", 
"5370", "5370", "5370", "8378", "5370", "5460", "5370", "9495", 
"5370", "8673", "8990", "6929", "7061", "9469", "5370", "5370", 
"8067", "7833", "5370", "5370", "5370", "5370", "5370", "7064", 
"5370", "8462", "5370", "6096", "5370", "6985", "5370", "5370", 
"5370", "5370", "5370", "5370", "7698", "5370", "5872", "5894", 
"9164", "5370", "5554", "5872", "5592", "5565", "5370", "6805", 
"5370", "8188", "8041", "5370", "5370", "7622", "8610", "9157", 
"8521", "5370", "5370", "5370", "7297", "5802", "6610", "5370", 
"5370", "6019", "5370", "5370", "5370", "5370", "5370", "6422", 
"7773", "5370", "5370", "6673", "7844", "5370", "7257", "5786", 
"5370", "7486", "5370", "8512", "7647", "6112", "5370", "6670", 
"9836", "9514", "5370", "5370", "5370", "7172", "8962", "6249", 
"9216", "5370", "5370", "8584", "5370", "7282", "5370", "8202", 
"5370", "8537", "9829", "8265", "5370", "5370", "5370", "7361", 
"8598", "9051", "5370", "9602", "5926", "5719", "5370", "9278", 
"5370", "8702", "8958", "5370", "5862", "5370", "5370", "7666", 
"5370", "5370", "5370", "5370", "5370", "5370", "6352", "5370", 
"6251", "5722", "5370", "8564", "5370", "5370", "8219", "5370", 
"5370", "9731", "5370", "5473", "6430", "5370", "8813", "5370", 
"5370", "5370", "5370", "5370", "5370", "5370", "5370", "5692", 
"6612", "5370", "5370", "7801", "8606", "5370", "9652", "5370", 
"5370", "7143", "7007", "5370", "7474", "5370", "5370", "5370", 
"5370", "5370", "5370", "6555", "5370", "9065", "5370", "5623", 
"5370", "5370", "6888", "8494", "6909", "5370", "5827", "5852", 
"5370", "5370", "6710", "5370", "5370", "7836", "5370"), date = structure(c(12934, 
13000, 13038, 13061, 13099, 13113, 13117, 13179, 13238, 13249, 
13268, 13296, 13299, 13309, 13314, 13391, 13400, 13404, 13409, 
13428, 13452, 13452, 13460, 13482, 13493, 13518, 13526, 13537, 
13542, 13544, 13596, 13616, 13617, 13626, 13633, 13633, 13639, 
13642, 13646, 13656, 13660, 13664, 13667, 13669, 13677, 13686, 
13694, 13694, 13707, 13716, 13725, 13738, 13739, 13746, 13756, 
13756, 13756, 13761, 13769, 13770, 13776, 13786, 13786, 13786, 
13791, 13799, 13806, 13813, 13817, 13817, 13817, 13822, 13829, 
13830, 13836, 13847, 13847, 13847, 13852, 13860, 13866, 13871, 
13878, 13878, 13878, 13882, 13883, 13883, 13887, 13887, 13888, 
13889, 13890, 13891, 13895, 13896, 13896, 13899, 13905, 13909, 
13909, 13909, 13910, 13914, 13918, 13922, 13923, 13926, 13938, 
13938, 13938, 13943, 13943, 13951, 13952, 13956, 13969, 13969, 
13974, 13982, 13983, 13986, 13989, 13999, 13999, 13999, 13999, 
14004, 14011, 14011, 14012, 14012, 14013, 14016, 14018, 14030, 
14030, 14030, 14035, 14036, 14043, 14046, 14050, 14052, 14060, 
14060, 14060, 14065, 14067, 14073, 14076, 14076, 14077, 14083, 
14091, 14091, 14096, 14096, 14096, 14097, 14104, 14106, 14117, 
14122, 14122, 14122, 14122, 14127, 14135, 14136, 14152, 14152, 
14152, 14152, 14157, 14158, 14165, 14165, 14165, 14166, 14183, 
14183, 14183, 14183, 14183, 14183, 14188, 14188, 14196, 14196, 
14213, 14213, 14213, 14213, 14218, 14226, 14226, 14231, 14232, 
14243, 14244, 14244, 14244, 14249, 14249, 14254, 14256, 14257, 
14257, 14258, 14259, 14259, 14263, 14263, 14264, 14266, 14267, 
14274, 14275, 14275, 14275, 14275, 14280, 14285, 14286, 14286, 
14288, 14291, 14299, 14302, 14303, 14303, 14308, 14312, 14313, 
14316, 14316, 14317, 14334, 14334, 14334, 14339, 14342, 14347, 
14364, 14364, 14364, 14369, 14377, 14377, 14377, 14391, 14395, 
14395, 14395, 14395, 14395, 14395, 14400, 14402, 14403, 14406, 
14408, 14425, 14425, 14425, 14425, 14425, 14430, 14433, 14436, 
14437, 14438, 14440, 14443, 14445, 14456, 14456, 14456, 14456, 
14458, 14461, 14461, 14463, 14463, 14464, 14466, 14469, 14484, 
14487, 14487, 14487, 14487, 14487, 14487, 14492, 14492, 14498, 
14500, 14500, 14508, 14513, 14514, 14517, 14517, 14517, 14517, 
14517, 14522, 14522, 14527, 14530, 14537, 14540, 14548, 14548, 
14548, 14553, 14556, 14560, 14561, 14563, 14578, 14578, 14578, 
14578, 14583, 14584, 14585, 14586, 14591, 14607, 14609, 14609, 
14609, 14609, 14609, 14609, 14611, 14612, 14614, 14614, 14615, 
14616, 14616, 14618, 14620, 14622, 14622, 14624, 14626, 14628, 
14629, 14631, 14633, 14637, 14640, 14640, 14640, 14640, 14645, 
14646, 14646, 14648, 14652, 14653, 14668, 14668, 14668, 14668, 
14670, 14673, 14673, 14676, 14679, 14680, 14681, 14681, 14685, 
14686, 14699, 14699, 14699, 14699, 14703, 14704, 14707, 14711, 
14712, 14712, 14727, 14729, 14729, 14729, 14734, 14737, 14738, 
14742, 14760, 14760, 14760, 14760, 14760, 14760, 14760, 14763, 
14765, 14769, 14773, 14773, 14773, 14774, 14777, 14784, 14790, 
14790, 14790, 14790, 14795, 14803, 14821, 14821, 14821, 14821, 
14824, 14826, 14826, 14828, 14829, 14829, 14830, 14831, 14834, 
14840, 14850, 14852, 14852, 14852, 14852, 14852, 14852, 14856, 
14856, 14857, 14865, 14882, 14882, 14882, 14882, 14882, 14882, 
14887, 14889, 14889, 14890, 14895, 14910, 14913, 14913, 14913, 
14918, 14918, 14919, 14922, 14926, 14927, 14943, 14943, 14943, 
14946, 14948, 14949, 14951, 14954, 14956, 14967, 14974, 14974
), class = "Date"), amount = c(24.4, 7618, 21971, 5245, 2921, 
8000, 169.2, 71.5, 14.6, 4214, 14.6, 13920, 14.6, 24640, 1600, 
261.1, 16400, 3500, 2700, 19882, 182, 14.6, 16927, 25653, 3059, 
2880, 9658, 4500, 12480, 14.6, 1000, 3679, 34430, 12600, 14.6, 
19.2, 4900, 826, 3679, 2100, 38000, 79, 11400, 21495, 3679, 200, 
14.6, 100.6, 3679, 5300, 108.9, 3679, 2696, 7500, 171.6, 14.6, 
99.2, 2452, 3679, 3218, 700, 69.7, 14.6, 91.5, 2452, 3679, 2900, 
17572, 14.6, 14.6, 90.5, 2452, 49752, 3679, 1900, 14.6, 870, 
85.2, 2452, 3679, 1600, 540, 14.6, 14.6, 79, 210, 2452, 28400, 
720, 180, 420, 44289, 489, 3679, 840, 2900, 150, 870, 420, 14.6, 
152.9, 64.1, 41464, 2452, 205, 3679, 2166, 100, 14.6, 14.6, 59.7, 
6588, 2452, 3679, 65, 200, 14.6, 65.7, 2452, 3679, 15792, 2000, 
2200, 99.7, 14.6, 140.3, 67.6, 2452, 5600, 873, 3679, 660, 36258, 
1900, 2002, 263, 14.6, 63.3, 2452, 14607, 3679, 1400, 7680, 360, 
14.6, 14.6, 65.5, 2452, 344, 3679, 990, 1000, 19652, 1080, 14.6, 
72.8, 22991, 2452, 1140, 9226, 3679, 2400, 1410, 18300, 14.6, 
14.6, 75.7, 2452, 3679, 1700, 14.6, 14.6, 65.4, 78.8, 2452, 6846, 
270, 3679, 6339, 3000, 14.6, 14.6, 358.3, 102.3, 14.6, 73.2, 
3869, 2452, 3679, 2800, 14.6, 14.6, 72.4, 228.2, 2452, 3679, 
3700, 180, 6900, 350, 14.6, 14.6, 59.2, 23131, 2452, 2880, 1200, 
630, 3679, 2400, 1680, 17100, 720, 390, 2520, 450, 1920, 840, 
137.9, 14.6, 14.6, 55.4, 2452, 5800, 1700, 24977, 3679, 570, 
630, 11700, 14.6, 58.3, 2452, 1347, 1455, 4600, 3679, 3300, 14.6, 
14.6, 51.9, 2452, 2038, 3679, 14.6, 49.6, 14.6, 2452, 9252, 3294, 
3679, 1170, 70.5, 70.1, 91.3, 14.6, 14.6, 54.1, 2452, 46181, 
15586, 74529, 3679, 189.5, 318.1, 14.6, 55.2, 14.6, 2452, 6446, 
1500, 6300, 3679, 8600, 300, 6500, 2600, 185.2, 14.6, 64.1, 11200, 
3041, 2452, 2895, 14037, 3103, 1200, 3679, 870, 14.6, 57.9, 93, 
109.1, 67.1, 14.6, 2452, 390, 13200, 7746, 3679, 2300, 2960, 
18292, 14.6, 136.9, 7500, 14.6, 65, 2452, 2974, 331, 3679, 1300, 
14600, 14.6, 14.6, 72.4, 2452, 1100, 10315, 3679, 39864, 94.1, 
101.2, 14.6, 72.4, 2452, 1469, 27132, 4700, 3679, 1000, 101.8, 
58.4, 76, 14.6, 14.6, 61.6, 38200, 570, 2400, 2452, 600, 400, 
100, 2412, 4485, 1320, 3679, 2500, 600, 810, 1800, 2400, 330, 
480, 14.6, 114, 14.6, 55.9, 2452, 500, 4356, 7045, 11889, 3679, 
146.1, 14.6, 288.5, 56.3, 1300, 3, 2452, 7156, 24784, 24423, 
3679, 822, 810, 20800, 2.2, 1800, 14.6, 63, 1050, 2452, 15976, 
4755, 11100, 3679, 180, 14.6, 166.6, 59.9, 2452, 5411, 13405, 
3679, 183.9, 14.6, 35.4, 10.8, 14.6, 14.6, 66.7, 1800, 2452, 
2277, 511, 800, 3679, 65, 5040, 450, 14.6, 14.6, 93.5, 71.5, 
2452, 3679, 14.6, 14.6, 14.6, 75.4, 270, 14, 2452, 4622, 145, 
24324, 1523, 372, 3679, 1400, 3100, 14.6, 14.6, 14.6, 77.9, 14.6, 
77.1, 14989, 6500, 2452, 3679, 247.3, 14.6, 14.6, 14.6, 190.6, 
58.7, 2452, 1398, 4268, 3597, 3679, 1800, 14.6, 14.6, 63.1, 2452, 
12400, 5106, 4633, 3679, 510, 14.6, 204.7, 67.1, 4500, 2452, 
5800, 1275, 6460, 3679, 6406, 78.7, 52.6)), row.names = c(NA, 
-478L), class = "data.frame")

EDIT:
According to @pseudospin 's solution, the following code:

library(data.table)
setDT(dt)
measure_graph <- function(dt) {
  network <- graph_from_data_frame(dt[,.(from, to)], directed=TRUE)
  accounts <- dt[date == max(date), from]
  list(
    account = accounts,
    degree = degree(network, mode = "all")[accounts],
    in_degree = degree(network, mode = "in")[accounts],
    out_degree = degree(network, mode = "out")[accounts]
  )
}

dt[, measure_graph(dt[(date >= end_date - 180) & (date <= end_date)]), .(end_date = date)]

使用上面提供的数据应用时 returns 此输出:

end_date    account     degree    in_degree    out_degree
<date>      <fctr>       <dbl>    <dbl>        <dbl>
2005-05-31  5370        1         0            1
2005-08-05  5370        2         0            2
2005-09-12  5370        3         0            3
2005-10-05  8605        NA        NA           NA
2005-11-12  5370        5         1            4
2005-11-26  6390        NA        NA           NA
2005-11-30  5370        6         2            4
2006-01-31  5370        7         2            5
2006-03-31  8934        NA        NA           NA
2006-04-11  5370        6         2            4
...

在这里,为什么帐户 8605,6390,8934 没有 degree=1, in_degree=0out_degree=1 而有 NA?此外,有些值是正确的,有些则不正确。例如,考虑帐户 5370.
的日期 "2010-12-11" 按此日期和帐户过滤输出结果:

end_date    account     degree   in_degree    out_degree
<date>      <fctr>      <dbl>    <dbl>        <dbl>
2010-12-11  5370        1        0            1

但是,当我根据日期 "2010-12-11" 和帐户 5370 之前的最后 6 个月期间(即 "2010-06-14"-"2010-12-11")筛选上面提供的示例数据时,通过

data[(date <="2010-12-11" & date>=as.Date(as.numeric(as.Date("2010-12-11"))-180, origin="1970-01-01")) & (from==5370 | to==5370)]

它给出:

id          from    to          date        amount  
<int>       <fctr>  <fctr>      <date>      <dbl>
890395       5939   5370        2010-06-14  65.0
891820       6592   5370        2010-06-17  5040.0
894176       5370   6352        2010-06-24  450.0
901068       5765   5370        2010-06-30  14.6
902416       5370   6251        2010-06-30  14.6
904059       5370   5722        2010-06-30  93.5
904624       5898   5370        2010-06-30  71.5
...
1032335      6700   5370        2010-11-30  67.1
1033712      5370   5827        2010-12-03  4500.0
1035096      5370   5852        2010-12-05  2452.0
1036537      7078   5370        2010-12-06  5800.0
1038682      7349   5370        2010-12-08  1275.0
1042439      5370   6710        2010-12-11  6460.0  

(63 rows in total)

所以,根据这个,实际上 5370 应该有 degree=63,如果我们只按 to==5370 过滤,我们会看到它应该有 in_degree=37 和类似地,如果我们只按 from==5370 过滤,我们会看到它应该有 out_degree=26,对于指定的日期范围 "2010-06-14"-"2010-12-11",而代码将其计算为 1,01 分别。 为什么代码对一些人给出正确的结果,但对另一些人给出错误的结果?

我想你只要按照你描述的去做就行了。我会这样安排:

library(data.table)
setDT(dt)
measure_graph <- function(dt) {
  network <- graph_from_data_frame(dt[,.(from, to)], directed=TRUE)
  accounts <- dt[date == max(date), from]
  list(
    account = accounts,
    closeness = closeness(network, normalized = TRUE)[accounts],
    betweenness = betweenness(network, normalized = TRUE)[accounts]
  )
}

dt[, measure_graph(dt[(date >= end_date - 180) & (date <= end_date)]), .(end_date = date)]

这只会为每个日期创建一次图表,并为该日期的所有 from 帐户提取您想要的统计信息。