使用 CUDA 原子操作和网格同步处理共享工作队列

Processing Shared Work Queue Using CUDA Atomic Operations and Grid Synchronization

我正在尝试编写一个内核,其线程迭代处理工作队列中的项目。我的理解是,我应该能够通过使用原子操作来操作工作队列(即从队列中获取工作项并将新的工作项插入队列),并通过协作组使用网格同步来确保所有线程来做到这一点处于同一迭代(我确保线程块的数量不超过内核的设备容量)。但是,有时我观察到在迭代期间多次跳过或处理工作项。

下面的代码是一个工作示例来说明这一点。在此示例中,创建了一个大小为 input_len 的数组,其中包含工作项 0input_len - 1processWorkItems 内核处理这些项目 max_iter 次迭代。每个工作项都可以将自己和它的上一个、下一个工作项放入工作队列,但是使用marked数组来保证在一个迭代过程中,每个工作项至多被加入工作队列一次。最后应该发生的是 histogram 中值的总和等于 input_len * max_iter,并且 histogram 中没有值大于 1。但我观察到偶尔这两个条件在输出中被违反,这意味着我没有得到原子操作 and/or 正确的同步。如果有人能指出我的推理 and/or 实现中的缺陷,我将不胜感激。我的 OS 是 Ubuntu 18.04,CUDA 版本是 10.1,我在 P100、V100 和 RTX 2080 Ti GPU 上进行了 运行 实验,观察到了类似的行为。

RTX 2080 Ti编译命令:

nvcc -O3 -o atomicsync atomicsync.cu --gpu-architecture=compute_75 -rdc=true

RTX 2080 Ti 上 运行s 的一些输入和输出:

./atomicsync 50 1000 1000
Skipped 0.01% of items. 5 extra item processing.
./atomicsync 500 1000 1000
Skipped 0.00% of items. 6 extra item processing.
./atomicsync 5000 1000 1000
Skipped 0.00% of items. 14 extra item processing.

atomicsync.cu:

#include <stdio.h>
#include <cooperative_groups.h>

#define checkCudaErrors(val) check ( (val), #val, __FILE__, __LINE__ )
template< typename T >
void check(T result, char const *const func, const char *const file, int const line)
{
    if (result)
    {
        fprintf(stderr, "CUDA error at %s:%d code=%d(%s) \"%s\" \n", file, line, static_cast<unsigned int>(result), cudaGetErrorString(result), func);
        cudaDeviceReset();
        exit(EXIT_FAILURE);
    }
}

__device__ inline void addWorkItem(int input_len, int item, int item_adder, int iter, int *queue, int *queue_size, int *marked) {
    int already_marked = atomicExch(&marked[item], 1);
    if(already_marked == 0) {
        int idx = atomicAdd(&queue_size[iter + 1], 1);
        queue[(iter + 1) * input_len + idx] = item;
    }
}

__global__ void processWorkItems(int input_len, int max_iter, int *histogram, int *queue, int *queue_size, int *marked) {
    auto grid = cooperative_groups::this_grid();

    const int items_per_block = (input_len + gridDim.x - 1) / gridDim.x;

    for(int iter = 0; iter < max_iter; ++iter) {
        while(true) {
            // Grab work item to process
            int idx = atomicSub(&queue_size[iter], 1);
            --idx;
            if(idx < 0) {
                break;
            }
            int item = queue[iter * input_len + idx];

            // Keep track of processed work items
             ++histogram[iter * input_len + item];

            // Add previous, self, and next work items to work queue
            if(item > 0) {
                addWorkItem(input_len, item - 1, item, iter, queue, queue_size, marked);
            }
            addWorkItem(input_len, item, item, iter, queue, queue_size, marked);
            if(item + 1 < input_len) {
                addWorkItem(input_len, item + 1, item, iter, queue, queue_size, marked);
            }
        }
        __threadfence_system();
        grid.sync();

        // Reset marked array for next iteration
        for(int i = 0; i < items_per_block; ++i) {
            if(blockIdx.x * items_per_block + i < input_len) {
                marked[blockIdx.x * items_per_block + i] = 0;
            }
        }
        __threadfence_system();
        grid.sync();
    }
}

int main(int argc, char* argv[])
{
    int input_len = atoi(argv[1]);
    int max_iter = atoi(argv[2]);
    int num_blocks = atoi(argv[3]);

    // A histogram to keep track of work items that have been processed in each iteration
    int histogram_host[input_len * max_iter];
    memset(histogram_host, 0, sizeof(int) * input_len * max_iter);
    int *histogram_device;
    checkCudaErrors(cudaMalloc(&histogram_device, sizeof(int) * input_len * max_iter));
    checkCudaErrors(cudaMemcpy(histogram_device, histogram_host, sizeof(int) * input_len * max_iter, cudaMemcpyHostToDevice));

    // Size of the work queue for each iteration
    int queue_size_host[max_iter + 1];
    queue_size_host[0] = input_len;
    memset(&queue_size_host[1], 0, sizeof(int) * max_iter);
    int *queue_size_device;
    checkCudaErrors(cudaMalloc(&queue_size_device, sizeof(int) * (max_iter + 1)));
    checkCudaErrors(cudaMemcpy(queue_size_device, queue_size_host, sizeof(int) * (max_iter + 1), cudaMemcpyHostToDevice));

    // Work queue
    int queue_host[input_len * (max_iter + 1)];
    for(int i = 0; i < input_len; ++i) {
        queue_host[i] = i;
    }
    memset(&queue_host[input_len], 0, sizeof(int) * input_len * max_iter);
    int *queue_device;
    checkCudaErrors(cudaMalloc(&queue_device, sizeof(int) * input_len * (max_iter + 1)));
    checkCudaErrors(cudaMemcpy(queue_device, queue_host, sizeof(int) * input_len * (max_iter + 1), cudaMemcpyHostToDevice));

    // An array used to keep track of work items already added to the work queue to
    // avoid multiple additions of a work item in the same iteration
    int marked_host[input_len];
    memset(marked_host, 0, sizeof(int) * input_len);
    int *marked_device;
    checkCudaErrors(cudaMalloc(&marked_device, sizeof(int) * input_len));
    checkCudaErrors(cudaMemcpy(marked_device, marked_host, sizeof(int) * input_len, cudaMemcpyHostToDevice));

    const dim3 threads(1, 1, 1);
    const dim3 blocks(num_blocks, 1, 1);

    processWorkItems<<<blocks, threads>>>(input_len, max_iter, histogram_device, queue_device, queue_size_device, marked_device);
    checkCudaErrors(cudaDeviceSynchronize());

    checkCudaErrors(cudaMemcpy(histogram_host, histogram_device, sizeof(int) * input_len * max_iter, cudaMemcpyDeviceToHost));

    int extra = 0;
    double deficit = 0;
    for(int i = 0; i < input_len; ++i) {
        int cnt = 0;
        for(int iter = 0; iter < max_iter; ++iter) {
            if(histogram_host[iter * input_len + i] > 1) {
                ++extra;
            }
            cnt += histogram_host[iter * input_len + i];
        }
        deficit += max_iter - cnt;
    }
    printf("Skipped %.2f%% of items. %d extra item processing.\n", deficit / (input_len * max_iter) * 100, extra);

    checkCudaErrors(cudaFree(histogram_device));
    checkCudaErrors(cudaFree(queue_device));
    checkCudaErrors(cudaFree(queue_size_device));
    checkCudaErrors(cudaFree(marked_device));

    return 0;
}

您可能希望在 programming gude 中阅读如何进行协作网格内核启动或研究任何使用网格的 cuda 示例代码(例如 reductionMultiBlockCG,以及其他代码)同步。

你做错了。您不能使用普通 <<<...>>> 启动语法启动协作网格。因此,没有理由假设内核中的 grid.sync() 工作正常。

通过 运行 在 cuda-memcheck 下很容易看出网格同步在您的代码中不起作用。当你这样做时,结果会变得更糟。

当我修改您的代码以进行适当的合作启动时,我在 Tesla V100 上没有问题:

$ cat t1811.cu
#include <stdio.h>
#include <cooperative_groups.h>

#define checkCudaErrors(val) check ( (val), #val, __FILE__, __LINE__ )
template< typename T >
void check(T result, char const *const func, const char *const file, int const line)
{
    if (result)
    {
        fprintf(stderr, "CUDA error at %s:%d code=%d(%s) \"%s\" \n", file, line, static_cast<unsigned int>(result), cudaGetErrorString(result), func);
        cudaDeviceReset();
        exit(EXIT_FAILURE);
    }
}

__device__ inline void addWorkItem(int input_len, int item, int item_adder, int iter, int *queue, int *queue_size, int *marked) {
    int already_marked = atomicExch(&marked[item], 1);
    if(already_marked == 0) {
        int idx = atomicAdd(&queue_size[iter + 1], 1);
        queue[(iter + 1) * input_len + idx] = item;
    }
}

__global__ void processWorkItems(int input_len, int max_iter, int *histogram, int *queue, int *queue_size, int *marked) {
    auto grid = cooperative_groups::this_grid();

    const int items_per_block = (input_len + gridDim.x - 1) / gridDim.x;

    for(int iter = 0; iter < max_iter; ++iter) {
        while(true) {
            // Grab work item to process
            int idx = atomicSub(&queue_size[iter], 1);
            --idx;
            if(idx < 0) {
                break;
            }
            int item = queue[iter * input_len + idx];

            // Keep track of processed work items
             ++histogram[iter * input_len + item];

            // Add previous, self, and next work items to work queue
            if(item > 0) {
                addWorkItem(input_len, item - 1, item, iter, queue, queue_size, marked);
            }
            addWorkItem(input_len, item, item, iter, queue, queue_size, marked);
            if(item + 1 < input_len) {
                addWorkItem(input_len, item + 1, item, iter, queue, queue_size, marked);
            }
        }
        __threadfence_system();
        grid.sync();

        // Reset marked array for next iteration
        for(int i = 0; i < items_per_block; ++i) {
            if(blockIdx.x * items_per_block + i < input_len) {
                marked[blockIdx.x * items_per_block + i] = 0;
            }
        }
        __threadfence_system();
        grid.sync();
    }
}

int main(int argc, char* argv[])
{
    int input_len = atoi(argv[1]);
    int max_iter = atoi(argv[2]);
    int num_blocks = atoi(argv[3]);

    // A histogram to keep track of work items that have been processed in each iteration
    int *histogram_host = new int[input_len * max_iter];
    memset(histogram_host, 0, sizeof(int) * input_len * max_iter);
    int *histogram_device;
    checkCudaErrors(cudaMalloc(&histogram_device, sizeof(int) * input_len * max_iter));
    checkCudaErrors(cudaMemcpy(histogram_device, histogram_host, sizeof(int) * input_len * max_iter, cudaMemcpyHostToDevice));

    // Size of the work queue for each iteration
    int queue_size_host[max_iter + 1];
    queue_size_host[0] = input_len;
    memset(&queue_size_host[1], 0, sizeof(int) * max_iter);
    int *queue_size_device;
    checkCudaErrors(cudaMalloc(&queue_size_device, sizeof(int) * (max_iter + 1)));
    checkCudaErrors(cudaMemcpy(queue_size_device, queue_size_host, sizeof(int) * (max_iter + 1), cudaMemcpyHostToDevice));

    // Work queue
    int *queue_host = new int[input_len * (max_iter + 1)];
    for(int i = 0; i < input_len; ++i) {
        queue_host[i] = i;
    }
    memset(&queue_host[input_len], 0, sizeof(int) * input_len * max_iter);
    int *queue_device;
    checkCudaErrors(cudaMalloc(&queue_device, sizeof(int) * input_len * (max_iter + 1)));
    checkCudaErrors(cudaMemcpy(queue_device, queue_host, sizeof(int) * input_len * (max_iter + 1), cudaMemcpyHostToDevice));

    // An array used to keep track of work items already added to the work queue to
    // avoid multiple additions of a work item in the same iteration
    int marked_host[input_len];
    memset(marked_host, 0, sizeof(int) * input_len);
    int *marked_device;
    checkCudaErrors(cudaMalloc(&marked_device, sizeof(int) * input_len));
    checkCudaErrors(cudaMemcpy(marked_device, marked_host, sizeof(int) * input_len, cudaMemcpyHostToDevice));

    const dim3 threads(1, 1, 1);
    const dim3 blocks(num_blocks, 1, 1);
    int dev = 0;
    int supportsCoopLaunch = 0;
    checkCudaErrors(cudaDeviceGetAttribute(&supportsCoopLaunch, cudaDevAttrCooperativeLaunch, dev));
    if (!supportsCoopLaunch) {printf("Cooperative Launch is not supported on this machine configuration.  Exiting."); return 0;}
    /// This will launch a grid that can maximally fill the GPU, on the default stream with kernel arguments
    int numBlocksPerSm = 0;
    // Number of threads my_kernel will be launched with
    int numThreads = threads.x;
    cudaDeviceProp deviceProp;
    checkCudaErrors(cudaGetDeviceProperties(&deviceProp, dev));
    checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor(&numBlocksPerSm, processWorkItems, numThreads, 0));
    // launch
    void *kernelArgs[] = { &input_len, &max_iter, &histogram_device, &queue_device, &queue_size_device, &marked_device};
    dim3 dimBlock = dim3(numThreads,1,1);
    num_blocks = min(num_blocks, deviceProp.multiProcessorCount*numBlocksPerSm);
    dim3 dimGrid(num_blocks, 1, 1);
    printf("launching %d blocks\n", dimGrid.x);
    checkCudaErrors(cudaLaunchCooperativeKernel((void*)processWorkItems, dimGrid, dimBlock, kernelArgs));

    // processWorkItems<<<blocks, threads>>>(input_len, max_iter, histogram_device, queue_device, queue_size_device, marked_device);
    checkCudaErrors(cudaDeviceSynchronize());

    checkCudaErrors(cudaMemcpy(histogram_host, histogram_device, sizeof(int) * input_len * max_iter, cudaMemcpyDeviceToHost));

    int extra = 0;
    double deficit = 0;
    for(int i = 0; i < input_len; ++i) {
        int cnt = 0;
        for(int iter = 0; iter < max_iter; ++iter) {
            if(histogram_host[iter * input_len + i] > 1) {
                ++extra;
            }
            cnt += histogram_host[iter * input_len + i];
        }
        deficit += max_iter - cnt;
    }
    printf("Skipped %.2f%% of items. %d extra item processing.\n", deficit / (input_len * max_iter) * 100, extra);

    checkCudaErrors(cudaFree(histogram_device));
    checkCudaErrors(cudaFree(queue_device));
    checkCudaErrors(cudaFree(queue_size_device));
    checkCudaErrors(cudaFree(marked_device));

    return 0;
}
$ nvcc -o t1811 t1811.cu -arch=sm_70 -std=c++11 -rdc=true
$ cuda-memcheck ./t1811 50 1000 5000
========= CUDA-MEMCHECK
launching 2560 blocks
Skipped 0.00% of items. 0 extra item processing.
========= ERROR SUMMARY: 0 errors
$ cuda-memcheck ./t1811 50 1000 1000
========= CUDA-MEMCHECK
launching 1000 blocks
Skipped 0.00% of items. 0 extra item processing.
========= ERROR SUMMARY: 0 errors
$ ./t1811 50 1000 5000
launching 2560 blocks
Skipped 0.00% of items. 0 extra item processing.
$ ./t1811 50 1000 1000
launching 1000 blocks
Skipped 0.00% of items. 0 extra item processing.
$ ./t1811 50 1000 1000
launching 1000 blocks
Skipped 0.00% of items. 0 extra item processing.
$

我并不是说上面的代码没有缺陷或适合任何特定用途。这主要是你的代码。我修改它只是为了演示提到的概念。

顺便说一句,我将您的一些大型 stack-based 内存分配更改为基于堆。我不建议尝试创建大型 stack-based 数组,例如:

int histogram_host[input_len * max_iter];

我认为最好这样做:

int *histogram_host = new int[input_len * max_iter];

随着您输入的 command-line 参数变大,这可能会成为一个问题,具体取决于机器特性。然而,这与 CUDA 没有太大关系。我没有尝试在您的代码中解决此模式的每个实例。

虽然与这个特定问题无关,但网格同步对于成功使用还有其他要求。这些都包含在编程指南中,可能包括但不限于:

  • 平台支持(例如OS、GPU 等)
  • 内核大小要求(启动的线程或线程块总数)

编程指南包含方便的 boiler-plate 代码,可用于满足这些要求。