跨多个列循环计算描述性统计信息

Calculate the descriptive statistics in a loop across several columns

我正在为一个变量生成随机数并重复该过程几次。我想在循环的每次迭代中计算每个组(group1group2group3)的 value 的平均值。我想存储结果,以便之后可以估计循环所有迭代中每个组的平均份额。

require(tidyverse)

set.seed(21)
group1 <- sample(c("A1", "A2", "B1", "B2", "C1", "C2"), 1000, TRUE)
group2 <- sample(c("G1", "G2", "G4"), 1000, TRUE)
group3 <- sample(c("D1", "D2"), 1000, TRUE)
prob <- runif(1000, 0, 1)
df <- as.data.frame(cbind(group1, group2, group3, prob))

df$prob <- as.numeric(df$prob)

for (i in 1:15) {
  
  df <- df %>%
    mutate(value = rbinom(nrow(df), 1, prob = prob))

  # [INSERT CALCULATION OF MEAN FOR EACH GROUP VARIABLE AND STORE IT]
}

# [INSERT CALCULATION OF MEAN ACROSS ALL ITERATIONS]

我的主要问题是如何以有效的方式估计多个变量的 value 的平均值,并以平滑的方式存储结果。

提前致谢。

澄清一下:

我希望最终结果看起来像这样:

col "group1_A1" "Group1_A2" "group1_B1" "group1_B2" "group1_C1" "group1_C2" "group2_G1" "group2_G2" "group2_G4" "group3_D1" "group3_D2"
x1  "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"    
x2  "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"    
x3  "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"    
x4  "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"    
x4  "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"    
x5  "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"    
x6  "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"    
x7  "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"    
x8  "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"    
x9  "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"    
x10 "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"     "x_bar"

其中三组子组的意思是替换 "x_bar 并且每一行都是一次迭代计算的意思。一个简单的解决方案是使用 dplyrgroup_by,但我想找到一个解决方案,所以我遍历了所有三个分组变量。

换句话说:假设变量 prob 是死亡的概率。 group1表示6个年龄段的变量,group2表示社会经济地位,group3表示性别。然后我想看看谁最有可能死去。为此,我随机生成了一个依赖于 prob 概率的伯努利变量。为了去除一些随机性,我重复这个过程 15 次,然后想看看死亡的每个社会人口群体的份额有多大(在变量 value 上收到 1 的值)。对于每次迭代,我想要来计算死者的群体归属(所以有多少男性死亡,有多少老人死亡)。很抱歉没有想出一个更令人愉快的例子。

library(dplyr)
df <- df %>%
    mutate(value = rbinom(nrow(df), 1, prob = prob)) %>%
    summarize_if(is.numeric,mean,na.rm = TRUE) #summarize_all also works if all columns are numeric anyway

这是一种使用一些 tidyverse 函数的方法。

library(dplyr)
library(tidyr)
df2 <- df %>% 
  pivot_longer(starts_with("group") ) %>%
  mutate(group = paste0(name, "_", value)) %>%
  select(group)

for (i in 1:15) {
  
  df2 <- df %>%
    mutate(value = rbinom(nrow(df), 1, prob = prob)) %>%
    pivot_longer(starts_with("group"), values_to = "val" ) %>%
    mutate(group = paste0(name, "_", val)) %>%
    group_by(group) %>%
    summarise(mean = mean(value, na.rm = TRUE)) %>%
    rename_with(.cols = mean, .fn = ~ paste0("mean", i)) %>%
    inner_join(df2, by = c("group" = "group"))
}
df2 %>%
  pivot_longer(starts_with("mean"), names_to = "trial", names_prefix = "mean") %>%
  distinct() %>%
  pivot_wider(id_cols = mean, names_from = "group", values_from = "value")
# A tibble: 15 x 12
   trial group1_A1 group1_A2 group1_B1 group1_B2 group1_C1 group1_C2 group2_G1 group2_G2 group2_G4 group3_D1 group3_D2
   <chr>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
 1 15        0.519     0.514     0.516     0.519     0.551     0.533     0.529     0.542     0.507     0.518     0.533
 2 14        0.481     0.486     0.503     0.536     0.487     0.550     0.526     0.493     0.507     0.495     0.520
 3 13        0.506     0.541     0.477     0.470     0.572     0.556     0.575     0.499     0.496     0.486     0.552
 4 12        0.519     0.534     0.497     0.557     0.604     0.509     0.549     0.522     0.548     0.548     0.531
 5 11        0.5       0.568     0.458     0.481     0.497     0.562     0.542     0.496     0.496     0.467     0.548
 6 10        0.525     0.466     0.503     0.503     0.535     0.580     0.581     0.490     0.496     0.488     0.548
 7 9         0.494     0.547     0.490     0.448     0.610     0.598     0.578     0.504     0.519     0.501     0.560
 8 8         0.538     0.554     0.471     0.530     0.599     0.538     0.545     0.516     0.559     0.565     0.518
 9 7         0.525     0.588     0.548     0.475     0.535     0.568     0.601     0.499     0.522     0.507     0.565
10 6         0.513     0.527     0.529     0.546     0.561     0.503     0.562     0.513     0.522     0.510     0.550
11 5         0.462     0.493     0.503     0.508     0.513     0.568     0.513     0.493     0.522     0.507     0.510
12 4         0.506     0.5       0.452     0.481     0.599     0.556     0.545     0.516     0.496     0.520     0.516
13 3         0.525     0.466     0.503     0.525     0.567     0.556     0.529     0.550     0.499     0.497     0.552
14 2         0.462     0.554     0.471     0.514     0.519     0.574     0.536     0.516     0.499     0.520     0.512
15 1         0.506     0.541     0.497     0.470     0.519     0.544     0.510     0.519     0.507     0.510     0.514

这就是您的第一部分 - data.frame 其中每一行都是一个试验,每组均值。

你的第二部分如下:

df2 %>%
  pivot_longer(starts_with("mean"), names_to = "trial", names_prefix = "mean") %>%
  distinct() %>%
  group_by(group) %>%
  summarize(mean = mean(value))
# A tibble: 11 x 2
   group      mean
   <chr>     <dbl>
 1 group1_A1 0.505
 2 group1_A2 0.525
 3 group1_B1 0.495
 4 group1_B2 0.504
 5 group1_C1 0.551
 6 group1_C2 0.553
 7 group2_G1 0.548
 8 group2_G2 0.511
 9 group2_G4 0.513
10 group3_D1 0.509
11 group3_D2 0.535