运行 一个 rgeom 样本并存储每个复制的平均值和 SD
Running a rgeom sample and storing the mean and SD of each replication
尝试运行 跟随 rgeom 500 次并存储每次复制的平均值和标准偏差。
rgeom(100, prob = .2)
到目前为止我有:
geom_means = rep(NA, 500)
geom_sd = rep(NA, 500)
X_geom500 <- replicate(500, {
samp <- rgeom(100, prob = .2)
geom_means = round(mean(samp),2)
})
X_geom500_sd <- replicate(500, {
samp <- rgeom(100, prob = .2)
round(sd(samp),2)
})
如果我单独 运行 代码,我可以获得 500 个均值和 500 个 sd 的向量,但我认为它们不匹配。我尝试创建一个 for 循环来存储每次迭代的均值和 SD,但我认为它工作不正常。
for i in range(1:500):
sample[i] <- rgeom(100, prob = .2)
geom_means[i] <- mean(sample[i])
geom_sd[i] <- sd(sample[i])
您可以从每个复制中获得均值和标准差:
set.seed(123)
n_rep <- 5
samp_geom <- function(n, prob) {
samp <- rgeom(n, prob)
return(list(mean = round(mean(samp), 2), sd = round(sd(samp, 2))))
}
replicate(n_rep, samp_geom(100, .2))
[,1] [,2] [,3] [,4] [,5]
mean 3.78 3.64 4.09 3.68 3.73
sd 4 4 5 5 4
将结果值存储在单独的向量中,如下所示:
geom_means <- unlist(samps["mean", ])
geom_means
# [1] 3.78 3.64 4.09 3.68 3.73
geom_sd <- unlist(samps["sd", ])
geom_sd
# [1] 4 4 5 5 4
尝试运行 跟随 rgeom 500 次并存储每次复制的平均值和标准偏差。
rgeom(100, prob = .2)
到目前为止我有:
geom_means = rep(NA, 500)
geom_sd = rep(NA, 500)
X_geom500 <- replicate(500, {
samp <- rgeom(100, prob = .2)
geom_means = round(mean(samp),2)
})
X_geom500_sd <- replicate(500, {
samp <- rgeom(100, prob = .2)
round(sd(samp),2)
})
如果我单独 运行 代码,我可以获得 500 个均值和 500 个 sd 的向量,但我认为它们不匹配。我尝试创建一个 for 循环来存储每次迭代的均值和 SD,但我认为它工作不正常。
for i in range(1:500):
sample[i] <- rgeom(100, prob = .2)
geom_means[i] <- mean(sample[i])
geom_sd[i] <- sd(sample[i])
您可以从每个复制中获得均值和标准差:
set.seed(123)
n_rep <- 5
samp_geom <- function(n, prob) {
samp <- rgeom(n, prob)
return(list(mean = round(mean(samp), 2), sd = round(sd(samp, 2))))
}
replicate(n_rep, samp_geom(100, .2))
[,1] [,2] [,3] [,4] [,5]
mean 3.78 3.64 4.09 3.68 3.73
sd 4 4 5 5 4
将结果值存储在单独的向量中,如下所示:
geom_means <- unlist(samps["mean", ])
geom_means
# [1] 3.78 3.64 4.09 3.68 3.73
geom_sd <- unlist(samps["sd", ])
geom_sd
# [1] 4 4 5 5 4