计算 pandas 序列的熵时出错

Error calculating entropy over pandas series

我正在尝试计算 pandas 系列的熵。具体来说,我将 Direction 中的字符串分组为一个序列。具体来说,使用这个函数:

diff_dir = df.iloc[0:,1].ne(df.iloc[0:,1].shift()).cumsum()

将 return Direction 中相同的字符串数,直到发生变化。因此,对于相同 Direction 字符串的每个序列,我想计算 X,Y.

的熵

使用代码,相同字符串的排序是:

0    1
1    1
2    1
3    1
4    1
5    2
6    2
7    2
8    3
9    3

此代码曾经有效,但现在 return 出现错误。我不确定这是否是升级后的结果。

import pandas as pd
import numpy as np

def ApEn(U, m = 2, r = 0.2):

    '''
    Approximate Entropy 

    Quantify the amount of regularity over time-series data.

    Input parameters:
    
    U = Time series
    m = Length of compared run of data (subseries length)
    r = Filtering level (tolerance). A positive number

    '''

    def _maxdist(x_i, x_j):
        return max([abs(ua - va) for ua, va in zip(x_i, x_j)])

    def _phi(m):
        x = [U.tolist()[i:i + m] for i in range(N - m + 1)] 
        C = [len([1 for x_j in x if _maxdist(x_i, x_j) <= r]) / (N - m + 1.0) for x_i in x]
        return (N - m + 1.0)**(-1) * sum(np.log(C))

    N = len(U)

    return abs(_phi(m + 1) - _phi(m))

def Entropy(df):

    '''
    Calculate entropy for individual direction
    '''

    df = df[['Time','Direction','X','Y']]
                                    
    diff_dir = df.iloc[0:,1].ne(df.iloc[0:,1].shift()).cumsum()

    # Calculate ApEn grouped by direction. 
    df['ApEn_X'] = df.groupby(diff_dir)['X'].transform(ApEn)
    df['ApEn_Y'] = df.groupby(diff_dir)['Y'].transform(ApEn)                 

    return df


df = pd.DataFrame(np.random.randint(0,50, size = (10, 2)), columns=list('XY'))
df['Time'] = range(1, len(df) + 1)

direction = ['Left','Left','Left','Left','Left','Right','Right','Right','Left','Left']
df['Direction'] = direction


# Calculate defensive regularity
entropy = Entropy(df)

错误:

return (N - m + 1.0)**(-1) * sum(np.log(C))
ZeroDivisionError: 0.0 cannot be raised to a negative power

你必须处理你的 ZeroDivisions。也许这样:

def _phi(m):
    if N == m - 1:
        return 0
    ...

然后您将在 groupbys、dfdiff_X[=18 上遇到长度不匹配=] 必须具有相同的长度。

看来,当调用 ApEn._phi() 函数时,Nm 的特定值可能最终 returning a 0.然后需要将其提高到 -1 的负次幂,但是它是未定义的(另请参见 Why does zero raised to the power of negative one equal infinity?)。

为了说明,我尝试专门复制您的场景,并且在 transform 操作的第一次迭代中,发生了以下情况:

U is: 1     0
      2    48

(第一个groupby有2个元素)

N is: 2
m is: 3

当您达到 _phi() 的 return 值时,您正在做 (N - m + 1.0)**-1 = (2 - 3 + 1)**-1 = 0**-1,这是未定义的。也许这里的关键是你说你是按个人方向分组并将 U 数组传递给近似熵函数,但是你按 diff_Xdiff_Y 分组,由于所应用方法的性质,导致非常小的群体。据我了解,如果你想计算每个方向的近似熵,你只需要按 'Direction':

分组
def Entropy(df):

    '''
    Calculate entropy for individual direction
    '''           

    # Calculate ApEn grouped by direction. 
    df['ApEn_X'] = df.groupby('Direction')['X'].transform(ApEn)
    df['ApEn_Y'] = df.groupby('Direction')['Y'].transform(ApEn)                 

    return df

这会产生如下数据框:

entropy.head()

    Time    Direction   X   Y   ApEn_X      ApEn_Y
0   1       Left        28  47  0.035091    0.035091
1   2       Up          8   47  0.013493    0.046520
2   3       Up          0   32  0.013493    0.046520
3   4       Right       34  8   0.044452    0.044452
4   5       Right       49  27  0.044452    0.044452

问题是因为下面的代码

(N - m + 1.0)**(-1)

考虑 N==1 并且由于 N = len(U) 当从 groupby 产生的组的大小为 1 时发生这种情况。由于 m==2 这最终为

(1-2+1)**-1 == 0

而我们 0**-1 未定义,因此错误。

现在如果我们从理论上看,你如何定义一个只有一个值的时间序列的近似熵;高度不可预测,因此它应该尽可能高。对于这种情况,让我们将其设置为 np.nan 以表示它未定义(熵始终大于等于 0)

代码

import pandas as pd
import numpy as np

def ApEn(U, m = 2, r = 0.2):

    '''
    Approximate Entropy 

    Quantify the amount of regularity over time-series data.

    Input parameters:
    
    U = Time series
    m = Length of compared run of data (subseries length)
    r = Filtering level (tolerance). A positive number

    '''

    def _maxdist(x_i, x_j):
        return max([abs(ua - va) for ua, va in zip(x_i, x_j)])

    def _phi(m):
        x = [U.tolist()[i:i + m] for i in range(N - m + 1)] 
        C = [len([1 for x_j in x if _maxdist(x_i, x_j) <= r]) / (N - m + 1.0) for x_i in x]
        if (N - m + 1) == 0:
          return np.nan
        return (N - m + 1)**(-1) * sum(np.log(C))

    N = len(U)

    return abs(_phi(m + 1) - _phi(m))

def Entropy(df):

    '''
    Calculate entropy for individual direction
    '''

    df = df[['Time','Direction','X','Y']]
                                    
    diff_dir = df.iloc[0:,1].ne(df.iloc[0:,1].shift()).cumsum()

    # Calculate ApEn grouped by direction. 
    df['ApEn_X'] = df.groupby(diff_dir)['X'].transform(ApEn)
    df['ApEn_Y'] = df.groupby(diff_dir)['Y'].transform(ApEn)

    return df

np.random.seed(0)
df = pd.DataFrame(np.random.randint(0,50, size = (10, 2)), columns=list('XY'))
df['Time'] = range(1, len(df) + 1)

direction = ['Left','Left','Left','Left','Left','Right','Right','Right','Left','Left']
df['Direction'] = direction

# Calculate defensive regularity
print (Entropy(df))

输出:

   Time Direction   X   Y    ApEn_X    ApEn_Y
0     1      Left   6  16  0.287682  0.287682
1     2      Left  22   6  0.287682  0.287682
2     3      Left  16   5  0.287682  0.287682
3     4      Left   5  48  0.287682  0.287682
4     5      Left  11  21  0.287682  0.287682
5     6     Right  44  25  0.693147  0.693147
6     7     Right  14  12  0.693147  0.693147
7     8     Right  43  40  0.693147  0.693147
8     9      Left  46  44       NaN       NaN
9    10      Left  49   2       NaN       NaN

更大的样本(导致 0**-1 问题)

np.random.seed(0)
df = pd.DataFrame(np.random.randint(0,50, size = (100, 2)), columns=list('XY'))
df['Time'] = range(1, len(df) + 1)
direction = ['Left','Right','Up','Down']
df['Direction'] = np.random.choice((direction), len(df))
print (Entropy(df))

输出:

    Time Direction   X   Y  ApEn_X  ApEn_Y
0      1      Left  44  47     NaN     NaN
1      2      Left   0   3     NaN     NaN
2      3      Down   3  39     NaN     NaN
3      4     Right   9  19     NaN     NaN
4      5        Up  21  36     NaN     NaN
..   ...       ...  ..  ..     ...     ...
95    96        Up  19  33     NaN     NaN
96    97      Left  40  32     NaN     NaN
97    98        Up  36   6     NaN     NaN
98    99      Left  21  31     NaN     NaN
99   100     Right  13   7     NaN     NaN