使数组 a 和 b 之和的差最小所需的最小交换次数是多少?
What is the minimum number of swaps needed so that the difference of sums of arrays a and b is minimum?
给定 2 个整数数组 a[]
和 b[]
,其大小与 n (1 <= n <= 100)
相同,编号来自 1 to n
。
(0 <= a[i], b[i] <= 6)
您可以将任何 a[i]
替换为 b[i]
。
需要多少 最小交换次数 才能使数组 a[]
和 [=] 之和的 之差14=] 是 最小值 ?
然后打印出来:
- 兑换次数
- 交换索引
- 两个数组之和的差
例子
n = 6
a[] = { 1, 1, 4, 4, 0, 6 }
b[] = { 6, 3, 1, 1, 6, 1 }
结果
- 2 (The number of swaps)
- 5, 6 (The swapped indexes)
- 0 (The difference of sums of the arrays)
说明
如果将 a[5]
与 b[5]
和 a[6]
交换 与 b[6]
需要 2 交换,数组 a[]
和 b[]
将变为:
a[] = {1, 1, 4, 4, 6, 1}
b[] = {6, 3, 1, 1, 0, 6}
a[]
的总和是 1 + 1 + 4 + 4 + 6 + 1 = 17
b[]
的总和是 6 + 3 + 1 + 1 + 0 + 6 = 17
所以两个和的差是0.
这是一种迭代方法,可以保存目前为止的差异并更新实现差异所需交换的最小索引列表。
JavaScript代码:
function update(obj, d, arr){
if (!obj[d] || obj[d].length > arr.length)
obj[d] = arr;
}
function f(A, B){
let diffs = {0: []};
for (let i=0; i<A.length; i++){
const newDiffs = {};
for (d in diffs){
// Swap
let d1 = Number(d) + B[i] - A[i];
if (diffs.hasOwnProperty(d1) && diffs[d1].length < diffs[d].length + 1)
update(newDiffs, d1, diffs[d1]);
else
update(newDiffs, d1, diffs[d].concat(i+1));
d1 = Number(d) + A[i] - B[i];
if (diffs.hasOwnProperty(d1) && diffs[d1].length < diffs[d].length)
update(newDiffs, d1, diffs[d1]);
else
update(newDiffs, d1, diffs[d]);
}
diffs = newDiffs;
}
console.log(JSON.stringify(diffs) + '\n\n');
let best = Infinity;
let idxs;
for (let d in diffs){
const _d = Math.abs(Number(d));
if (_d < best){
best = _d;
idxs = diffs[d];
}
}
return [best, idxs];
};
var A = [1, 1, 4, 4, 0, 6];
var B = [6, 3, 1, 1, 6, 1];
console.log(JSON.stringify(f(A, B)));
这是我的基于 Javascript גלעד ברקן 答案的 C++ 实现。
简短说明:
我们维护了迄今为止看到的所有差异及其最小交换的映射,并尝试根据新值扩展目前看到的所有差异以获得此类新映射。在考虑 A
和 B
中的 ith
项时,我们在每一步都有 2 个选择,要么按原样考虑这些项,要么交换 ith
个项。
代码:
#include <iostream>
#include <climits>
#include <unordered_map>
#include <vector>
using namespace std; // Pardon me for this sin
void update_keeping_existing_minimum(unordered_map<int, vector<int> >& mp, int key, vector<int>& value){
if(mp.find(key) == mp.end() || mp[key].size() > value.size())mp[key] = value;
}
// Prints minimum swaps, indexes of swaps and minimum difference of sums
// Runtime is O(2^size_of_input) = 2^1 + 2^2 .. + 2^n = 2*2^n
// This is a bruteforce implementation.
// We try all possible cases, by expanding our array 1 index at time.
// For each previous difference,
// we use new index value and expand our possible difference outcomes.
// In worst case we may get 2 unique differences never seen before for every index.
void get_minimum_swaps(vector<int>& a, vector<int>& b){
int n = a.size();
unordered_map<int, vector<int> > prv_differences_mp;
prv_differences_mp[0] = {}; // initial state
for(int i = 0 ; i < n ; i++){
unordered_map<int, vector<int> > new_differences_mp;
for (auto& it: prv_differences_mp) {
// possibility 1, we swap and expand previous difference
int d = it.first;
int d1 = d + b[i] - a[i];
if(prv_differences_mp.find(d1) != prv_differences_mp.end() && prv_differences_mp[d1].size() < (prv_differences_mp[d].size() + 1)){
update_keeping_existing_minimum(new_differences_mp, d1, prv_differences_mp[d1]);
} else {
// only place we are modifying the prv map, lets make a copy so that changes don't affect other calculations
vector<int> temp = prv_differences_mp[d];
temp.push_back(i+1);
update_keeping_existing_minimum(new_differences_mp, d1, temp);
}
// possibility 2, we don't swap and expand previous difference
int d2 = d + a[i] - b[i];
if(prv_differences_mp.find(d2) != prv_differences_mp.end() && prv_differences_mp[d2].size() < prv_differences_mp[d].size()){
update_keeping_existing_minimum(new_differences_mp, d2, prv_differences_mp[d2]);
} else {
update_keeping_existing_minimum(new_differences_mp, d2, prv_differences_mp[d]);
}
}
cout<<i<<":index\n";
for(auto& it: prv_differences_mp){
cout<<it.first<<": [ ";
for(auto& item: it.second)cout<<item<<" ";
cout<<"] ; ";
}
cout<<"\n";
prv_differences_mp = new_differences_mp;
}
int best = INT_MAX;
vector<int> min_swap_ans;
for(auto& it: prv_differences_mp){
int _d = it.first >= 0 ? it.first: -it.first;
if(_d < best){
best = _d;
min_swap_ans = it.second;
}
}
cout<<"Number of swaps: "<<min_swap_ans.size()<<"\n";
cout<<"Swapped indexes:\n";
for(auto idx: min_swap_ans)cout<<idx<<" ";
cout<<"\nDifference: "<<best<<"\n";
}
int main(){
vector<int> A{ 1, 1, 4, 4, 0, 6 };
vector<int> B{ 6, 3, 1, 1, 6, 1 };
get_minimum_swaps(A, B);
return 0;
}
给定 2 个整数数组 a[]
和 b[]
,其大小与 n (1 <= n <= 100)
相同,编号来自 1 to n
。
(0 <= a[i], b[i] <= 6)
您可以将任何 a[i]
替换为 b[i]
。
需要多少 最小交换次数 才能使数组 a[]
和 [=] 之和的 之差14=] 是 最小值 ?
然后打印出来:
- 兑换次数
- 交换索引
- 两个数组之和的差
例子
n = 6
a[] = { 1, 1, 4, 4, 0, 6 }
b[] = { 6, 3, 1, 1, 6, 1 }
结果
- 2 (The number of swaps)
- 5, 6 (The swapped indexes)
- 0 (The difference of sums of the arrays)
说明
如果将 a[5]
与 b[5]
和 a[6]
交换 与 b[6]
需要 2 交换,数组 a[]
和 b[]
将变为:
a[] = {1, 1, 4, 4, 6, 1}
b[] = {6, 3, 1, 1, 0, 6}
a[]
的总和是 1 + 1 + 4 + 4 + 6 + 1 = 17
b[]
的总和是 6 + 3 + 1 + 1 + 0 + 6 = 17
所以两个和的差是0.
这是一种迭代方法,可以保存目前为止的差异并更新实现差异所需交换的最小索引列表。
JavaScript代码:
function update(obj, d, arr){
if (!obj[d] || obj[d].length > arr.length)
obj[d] = arr;
}
function f(A, B){
let diffs = {0: []};
for (let i=0; i<A.length; i++){
const newDiffs = {};
for (d in diffs){
// Swap
let d1 = Number(d) + B[i] - A[i];
if (diffs.hasOwnProperty(d1) && diffs[d1].length < diffs[d].length + 1)
update(newDiffs, d1, diffs[d1]);
else
update(newDiffs, d1, diffs[d].concat(i+1));
d1 = Number(d) + A[i] - B[i];
if (diffs.hasOwnProperty(d1) && diffs[d1].length < diffs[d].length)
update(newDiffs, d1, diffs[d1]);
else
update(newDiffs, d1, diffs[d]);
}
diffs = newDiffs;
}
console.log(JSON.stringify(diffs) + '\n\n');
let best = Infinity;
let idxs;
for (let d in diffs){
const _d = Math.abs(Number(d));
if (_d < best){
best = _d;
idxs = diffs[d];
}
}
return [best, idxs];
};
var A = [1, 1, 4, 4, 0, 6];
var B = [6, 3, 1, 1, 6, 1];
console.log(JSON.stringify(f(A, B)));
这是我的基于 Javascript גלעד ברקן 答案的 C++ 实现。
简短说明:
我们维护了迄今为止看到的所有差异及其最小交换的映射,并尝试根据新值扩展目前看到的所有差异以获得此类新映射。在考虑 A
和 B
中的 ith
项时,我们在每一步都有 2 个选择,要么按原样考虑这些项,要么交换 ith
个项。
代码:
#include <iostream>
#include <climits>
#include <unordered_map>
#include <vector>
using namespace std; // Pardon me for this sin
void update_keeping_existing_minimum(unordered_map<int, vector<int> >& mp, int key, vector<int>& value){
if(mp.find(key) == mp.end() || mp[key].size() > value.size())mp[key] = value;
}
// Prints minimum swaps, indexes of swaps and minimum difference of sums
// Runtime is O(2^size_of_input) = 2^1 + 2^2 .. + 2^n = 2*2^n
// This is a bruteforce implementation.
// We try all possible cases, by expanding our array 1 index at time.
// For each previous difference,
// we use new index value and expand our possible difference outcomes.
// In worst case we may get 2 unique differences never seen before for every index.
void get_minimum_swaps(vector<int>& a, vector<int>& b){
int n = a.size();
unordered_map<int, vector<int> > prv_differences_mp;
prv_differences_mp[0] = {}; // initial state
for(int i = 0 ; i < n ; i++){
unordered_map<int, vector<int> > new_differences_mp;
for (auto& it: prv_differences_mp) {
// possibility 1, we swap and expand previous difference
int d = it.first;
int d1 = d + b[i] - a[i];
if(prv_differences_mp.find(d1) != prv_differences_mp.end() && prv_differences_mp[d1].size() < (prv_differences_mp[d].size() + 1)){
update_keeping_existing_minimum(new_differences_mp, d1, prv_differences_mp[d1]);
} else {
// only place we are modifying the prv map, lets make a copy so that changes don't affect other calculations
vector<int> temp = prv_differences_mp[d];
temp.push_back(i+1);
update_keeping_existing_minimum(new_differences_mp, d1, temp);
}
// possibility 2, we don't swap and expand previous difference
int d2 = d + a[i] - b[i];
if(prv_differences_mp.find(d2) != prv_differences_mp.end() && prv_differences_mp[d2].size() < prv_differences_mp[d].size()){
update_keeping_existing_minimum(new_differences_mp, d2, prv_differences_mp[d2]);
} else {
update_keeping_existing_minimum(new_differences_mp, d2, prv_differences_mp[d]);
}
}
cout<<i<<":index\n";
for(auto& it: prv_differences_mp){
cout<<it.first<<": [ ";
for(auto& item: it.second)cout<<item<<" ";
cout<<"] ; ";
}
cout<<"\n";
prv_differences_mp = new_differences_mp;
}
int best = INT_MAX;
vector<int> min_swap_ans;
for(auto& it: prv_differences_mp){
int _d = it.first >= 0 ? it.first: -it.first;
if(_d < best){
best = _d;
min_swap_ans = it.second;
}
}
cout<<"Number of swaps: "<<min_swap_ans.size()<<"\n";
cout<<"Swapped indexes:\n";
for(auto idx: min_swap_ans)cout<<idx<<" ";
cout<<"\nDifference: "<<best<<"\n";
}
int main(){
vector<int> A{ 1, 1, 4, 4, 0, 6 };
vector<int> B{ 6, 3, 1, 1, 6, 1 };
get_minimum_swaps(A, B);
return 0;
}