Pandas:如何通过大于考虑索引来过滤列

Pandas: How to filter a column by greater than considering an index

我有一个代表餐厅顾客评分的数据框。 star_rating 是客户在此数据框中的评分。

data = {'rating_id': ['1', '2','3','4','5','6','7','8','9'],
        'user_id': ['56', '13','56','99','99','13','12','88','45'],
        'restaurant_id':  ['xxx', 'xxx','yyy','yyy','xxx','zzz','zzz','eee','eee'],
        'star_rating': ['2.3', '3.7','1.2','5.0','1.0','3.2','1.0','2.2','0.2'],
        'rating_year': ['2012','2012','2020','2001','2020','2015','2000','2003','2004'],
        'first_year': ['2012', '2012','2001','2001','2012','2000','2000','2001','2001'],
        'last_year': ['2020', '2020','2020','2020','2020','2015','2015','2020','2020'],
        }


df = pd.DataFrame (data, columns = ['rating_id','user_id','restaurant_id','star_rating','rating_year','first_year','last_year'])
df['star_rating'] = df['star_rating'].astype(float)

positive_reviews = df[df.star_rating >= 3.0 ].groupby('restaurant_id')
positive_reviews.head()

从这里开始,我不知道要计算餐厅正面评价的数量并将其添加到我的初始数据框的新列中 df

预期的输出是这样的。

data = {'rating_id': ['1', '2','3','4','5','6','7','8','9'],
        'user_id': ['56', '13','56','99','99','13','12','88','45'],
        'restaurant_id':  ['xxx', 'xxx','yyy','yyy','xxx','zzz','zzz','eee','eee'],
        'star_rating': ['2.3', '3.7','1.2','5.0','1.0','3.2','1.0','2.2','0.2'],
        'rating_year': ['2012','2012','2020','2001','2020','2015','2000','2003','2004'],
        'first_year': ['2012', '2012','2001','2001','2012','2000','2000','2001','2001'],
        'last_year': ['2020', '2020','2020','2020','2020','2015','2015','2020','2020'],
        'nb_fave_rating': ['1', '1','1','1','1','1','1','0','0'],
        }

所以我尝试了这个并得到了一堆 NaN

df['nb_fave_rating']=df[df.star_rating >= 3.0 ].groupby('restaurant_id').agg({'star_rating': 'count'})
df.head()

一行完成。

groupby()transform 布尔选择并将结果转换为 integer.

  df['nb_fave_rating']=df.groupby('restaurant_id')['star_rating'].transform(lambda x: int((x>=3).sum()))

 rating_id user_id restaurant_id  star_rating rating_year first_year  \
0         1      56           xxx          2.3        2012       2012   
1         2      13           xxx          3.7        2012       2012   
2         3      56           yyy          1.2        2020       2001   
3         4      99           yyy          5.0        2001       2001   
4         5      99           xxx          1.0        2020       2012   
5         6      13           zzz          3.2        2015       2000   
6         7      12           zzz          1.0        2000       2000   
7         8      88           eee          2.2        2003       2001   
8         9      45           eee          0.2        2004       2001   

  last_year  nb_fave_rating  
0      2020             1.0  
1      2020             1.0  
2      2020             1.0  
3      2020             1.0  
4      2020             1.0  
5      2015             1.0  
6      2015             1.0  
7      2020             0.0  
8      2020             0.0  
  • 使用 mapsolution from Grayrigel 是最快的解决方案。
  • 使用 .groupby 获取每个 restaurant_id
  • 的评分 >=3
  • .merge positive_reviews 回到 df.
positive_reviews = df[df.star_rating >= 3.0 ].groupby('restaurant_id', as_index=False).agg({'star_rating': 'count'}).rename(columns={'star_rating': 'nb_fave_rating'})

# join back to df
df = df.merge(positive_reviews, how='left', on='restaurant_id').fillna(0)

# display(df)
  rating_id user_id restaurant_id  star_rating rating_year first_year last_year  nb_fave_rating
0         1      56           xxx          2.3        2012       2012      2020             1.0
1         2      13           xxx          3.7        2012       2012      2020             1.0
2         3      56           yyy          1.2        2020       2001      2020             1.0
3         4      99           yyy          5.0        2001       2001      2020             1.0
4         5      99           xxx          1.0        2020       2012      2020             1.0
5         6      13           zzz          3.2        2015       2000      2015             1.0
6         7      12           zzz          1.0        2000       2000      2015             1.0
7         8      88           eee          2.2        2003       2001      2020             0.0
8         9      45           eee          0.2        2004       2001      2020             0.0

%timeit比较

  • 给定 9 行数据框,df 在问题中
# create a test dataframe of 1,125,000 rows
dfl = pd.concat([df] * 125000).reset_index(drop=True)

# test with transform
def add_rating_transform(df):
    return df.groupby('restaurant_id')['star_rating'].transform(lambda x: int((x>=3).sum()))


%timeit add_rating_transform(dfl)
[out]:
222 ms ± 9.01 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

# test with map
def add_rating_map(df):
    filtered_data = df[df['star_rating'] >= 3]
    d = filtered_data.groupby('restaurant_id')['star_rating'].count().to_dict()
    return df['restaurant_id'].map(d).fillna(0).astype(int)


%timeit add_rating_map(dfl)
[out]:
105 ms ± 1.56 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

# test with merge
def add_rating_merge(df):
    positive_reviews = df[df.star_rating >= 3.0 ].groupby('restaurant_id', as_index=False).agg({'star_rating': 'count'}).rename(columns={'star_rating': 'nb_fave_rating'})
    return df.merge(positive_reviews, how='left', on='restaurant_id').fillna(0) 


%timeit add_rating_merge(dfl)
[out]:
639 ms ± 26.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

这是一个潜在的解决方案 groupby and map:

#filtering the data with >=3 ratings 
filtered_data = df[df['star_rating'] >= 3]

#creating a dict containing the counts of the all the favorable reviews
d = filtered_data.groupby('restaurant_id')['star_rating'].count().to_dict()

#mapping the dictionary to the restaurant_id to generate 'nb_fave_rating'
df['nb_fave_rating'] = df['restaurant_id'].map(d)

#taking care of `NaN` values 
df.fillna(0,inplace=True)

#making the column integer (just to match the requirements)
df['nb_fave_rating'] = df['nb_fave_rating'].astype(int)

print(df)

输出:

  rating_id user_id restaurant_id  star_rating rating_year first_year last_year  nb_fave_rating
0         1      56           xxx          2.3        2012       2012      2020               1
1         2      13           xxx          3.7        2012       2012      2020               1
2         3      56           yyy          1.2        2020       2001      2020               1
3         4      99           yyy          5.0        2001       2001      2020               1
4         5      99           xxx          1.0        2020       2012      2020               1
5         6      13           zzz          3.2        2015       2000      2015               1
6         7      12           zzz          1.0        2000       2000      2015               1
7         8      88           eee          2.2        2003       2001      2020               0
8         9      45           eee          0.2        2004       2001      2020               0

计算评分 >= 3.0 的情况

df['nb_fave_rating'] = df.groupby('restaurant_id')['star_rating'].transform(lambda x: x.ge(3.0).sum()).astype(np.int)