添加 Power-law 和基于卡方误差最小化的指数拟合到我的 PDF
Add Power-law and exponential fit based on chi square error minimization to my PDF
您好,正如标题所暗示的那样,我一直在尝试向我的 PDF 添加适合的指数和幂律。
如图所示:
我使用的代码生成了底层图表:
密码是这个:
a11=[9.76032106e-02, 6.73754187e-02, 3.20683249e-02, 2.21788509e-02,
2.70850237e-02, 9.90377323e-03, 2.11573411e-02, 8.46232347e-03,
8.49027869e-03, 7.33997745e-03, 5.71819070e-03, 4.62720448e-03,
4.11562884e-03, 3.20064313e-03, 2.66192941e-03, 1.69116510e-03,
1.94355212e-03, 2.55224949e-03, 1.23822395e-03, 5.29618250e-04,
4.03769641e-04, 3.96865740e-04, 3.38530868e-04, 2.04124701e-04,
1.63913557e-04, 2.04486864e-04, 1.82216592e-04, 1.34708400e-04,
9.24289261e-05, 9.55074181e-05, 8.13695322e-05, 5.15610541e-05,
4.15425149e-05, 4.68101099e-05, 3.33696885e-05, 1.61893058e-05,
9.61743970e-06, 1.17314090e-05, 6.65239507e-06]
b11=[3.97213201e+00, 4.77600082e+00, 5.74255432e+00, 6.90471618e+00,
8.30207306e+00, 9.98222306e+00, 1.20023970e+01, 1.44314081e+01,
1.73519956e+01, 2.08636432e+01, 2.50859682e+01, 3.01627952e+01,
3.62670562e+01, 4.36066802e+01, 5.24316764e+01, 6.30426504e+01,
7.58010432e+01, 9.11414433e+01, 1.09586390e+02, 1.31764173e+02,
1.58430233e+02, 1.90492894e+02, 2.29044305e+02, 2.75397642e+02,
3.31131836e+02, 3.98145358e+02, 4.78720886e+02, 5.75603061e+02,
6.92091976e+02, 8.32155588e+02, 1.00056488e+03, 1.20305636e+03,
1.44652749e+03, 1.73927162e+03, 2.09126048e+03, 2.51448384e+03,
3.02335795e+03, 3.63521656e+03, 4.37090138e+03]
plt.plot(b11,a11, 'ro')
plt.yscale("log")
plt.xscale("log")
plt.show()
我想根据卡方误差最小化方法向基础图形中添加适用于更短时间的幂律和适用于更长时间的指数拟合。
以csv形式保存的x轴数据:
x轴数据:
正如我在评论中提到的,我认为您可以通过常数项将幂律和指数结合起来。或者,数据看起来可以符合两个幂律。尽管评论表明确实存在指数行为。无论如何,我在这里展示了这两种方法。在这两种情况下,我都尽量避免任何类型的 piece-wise 定义。这也确保了 $C^infty$.
在第一种方法中,我们有 a * x**( -b )
用于小 x
和 a1 * exp( -d * x )
用于大 x
。这个想法是选择一个 c
使得幂律对于所需的小 x
比 c
大得多,但在其他方面要小得多。
这允许我评论中提到的功能,即 ( a * x**( -b ) + c ) * exp( -d * x )
。可以将 c
视为转换参数。
在替代方法中,我采用了两个 power-laws。因此,有两个区域,在第一个函数中,一个较小,在第二个函数中,第二个较小。因为我总是想要较小的函数,所以我进行逆求和,即 f = 1 / ( 1 / f1 + 1 / f2 )
。从下面的代码中可以看出,我添加了一个附加参数(技术上在 ] 0,infty [ 中)。此参数控制过渡的平滑度。
import matplotlib.pyplot as mp
import numpy as np
from scipy.optimize import curve_fit
data = np.loadtxt( "7jyRi.txt", delimiter=',' )
#### p-e: power and exponential coupled via a small constant term
def func_log( x, a, b, c, d ):
return np.log10( ( a * x**( -b ) + c ) * np.exp( -d * x ) )
guess = [.1, .8, 0.01, .005 ]
testx = np.logspace( 0, 3, 150 )
testy = np.fromiter( ( 10**func_log( x, *guess ) for x in testx ), np.float )
sol, _ = curve_fit( func_log, data[ ::, 0 ], np.log10( data[::,1] ), p0=guess )
fity = np.fromiter( ( 10**func_log( x, *sol ) for x in testx ), np.float )
#### p-p: alternatively using two power laws
def double_power_log( x, a, b, c, d, k ):
s1 = ( a * x**( -b ) )**k
s2 = ( c * x**( -d ) )**k
out = 1.0 / ( 1.0 / s1 + 1.0 / s2 )**( 1.0 / k )
return np.log10( out )
aguess = [.1, .8, 1e7, 4, 1 ]
atesty = np.fromiter( ( 10**double_power_log( x, *aguess ) for x in testx ), np.float )
asol, _ = curve_fit( double_power_log, data[ ::, 0 ], np.log10( data[ ::, 1 ] ), p0=aguess )
afity = np.fromiter( ( 10**double_power_log( x, *asol ) for x in testx ), np.float )
#### plotting
fig = mp.figure( figsize=( 10, 8 ) )
ax = fig.add_subplot( 1, 1, 1 )
ax.plot( data[::,0], data[::,1] ,ls='', marker='o', label="data" )
ax.plot( testx, testy ,ls=':', label="guess p-e" )
ax.plot( testx, atesty ,ls=':',label="guess p-p" )
ax.plot( testx, fity ,ls='-',label="fit p-e: {}".format( sol ) )
ax.plot( testx, afity ,ls='-', label="fit p-p: {}".format( asol ) )
ax.set_xscale( "log" )
ax.set_yscale( "log" )
ax.set_xlim( [ 5e-1, 2e3 ] )
ax.set_ylim( [ 1e-5, 2e-1 ] )
ax.legend( loc=0 )
mp.show()
结果看起来像
为了完整起见,我想添加一个具有 piece-wise 定义的解决方案。由于我希望函数连续且可微,因此指数定律的参数不是完全自由的。使用 f = a * x**(-b)
和 g = alpha * exp( -beta * x )
以及 x0
处的转换,我选择 ( a, b, x0 )
作为自由参数。 alpha
和 beta
随之而来。虽然方程式没有简单的解决方案,因此这本身需要最小化。
import matplotlib.pyplot as mp
import numpy as np
from scipy.optimize import curve_fit
from scipy.optimize import minimize
from scipy.special import lambertw
data = np.loadtxt( "7jyRi.txt", delimiter=',' )
def pwl( x, a, b):
return a * x**( -b )
def expl( x, a, b ):
return a * np.exp( -b * x )
def alpha_fun(alpha, a, b, x0):
out = alpha - pwl( x0, a, b ) * expl(1, 1, lambertw( pwl( x0, -a * b/ alpha, b ) ) )
return 1e10 * np.abs( out )**2
def p_w( v, a,b, alpha, beta, x0 ):
if v < x0:
out = pwl( v, a, b )
else:
out = expl( v, alpha, beta )
return np.log10( out )
def alpha_beta( x, a, b, x0 ):
"""
continuous and differentiable define alpha and beta
free parameter is the point where I connect
"""
sol = minimize(alpha_fun, .005, args=( a, b, x0 ) )### attention, strongly depends on starting guess, i.e might be a catastrophic fail
alpha = sol.x[0]
# ~print alpha
beta = np.real( -lambertw( pwl( x0, -a * b/ alpha, b ) )/ x0 )
###
if isinstance( x, ( np.ndarray, list, tuple ) ):
out = list()
for v in x:
out.append( p_w( v, a, b, alpha, beta, x0 ) )
else:
out = p_w( v, a, b, alpha, beta, x0 )
return out
sol,_ = curve_fit( alpha_beta, data[ ::, 0 ], np.log10( data[ ::, 1 ] ), p0=[ .1, .8, 70. ] )
alpha0 = minimize(alpha_fun, .005, args=tuple(sol ) ).x[0]
beta0 = np.real( -lambertw( pwl( sol[2], -sol[0] * sol[1]/ alpha0, sol[1] ) )/ sol[2] )
xl = np.logspace(0,3,100)
yl = alpha_beta( xl, *sol )
pl = pwl( xl, sol[0], sol[1] )
el = expl( xl, alpha0, beta0 )
#### plotting
fig = mp.figure( figsize=( 10, 8 ) )
ax = fig.add_subplot( 1, 1, 1 )
ax.plot( data[::,0], data[::,1] ,ls='', marker='o', label="data" )
ax.plot( xl, pl ,ls=':', label="p" )
ax.plot( xl, el ,ls=':', label="{:0.3e} exp(-{:0.3e} x)".format(alpha0, beta0) )
ax.plot( xl, [10**y for y in yl] ,ls='-', label="sol: {}".format(sol) )
ax.axvline(sol[-1], color='k', ls=':')
ax.set_xscale( "log" )
ax.set_yscale( "log" )
ax.set_xlim( [ 5e-1, 2e3 ] )
ax.set_ylim( [ 1e-5, 2e-1 ] )
ax.legend( loc=0 )
mp.show()
最终提供
您好,正如标题所暗示的那样,我一直在尝试向我的 PDF 添加适合的指数和幂律。
如图所示:
我使用的代码生成了底层图表:
密码是这个:
a11=[9.76032106e-02, 6.73754187e-02, 3.20683249e-02, 2.21788509e-02,
2.70850237e-02, 9.90377323e-03, 2.11573411e-02, 8.46232347e-03,
8.49027869e-03, 7.33997745e-03, 5.71819070e-03, 4.62720448e-03,
4.11562884e-03, 3.20064313e-03, 2.66192941e-03, 1.69116510e-03,
1.94355212e-03, 2.55224949e-03, 1.23822395e-03, 5.29618250e-04,
4.03769641e-04, 3.96865740e-04, 3.38530868e-04, 2.04124701e-04,
1.63913557e-04, 2.04486864e-04, 1.82216592e-04, 1.34708400e-04,
9.24289261e-05, 9.55074181e-05, 8.13695322e-05, 5.15610541e-05,
4.15425149e-05, 4.68101099e-05, 3.33696885e-05, 1.61893058e-05,
9.61743970e-06, 1.17314090e-05, 6.65239507e-06]
b11=[3.97213201e+00, 4.77600082e+00, 5.74255432e+00, 6.90471618e+00,
8.30207306e+00, 9.98222306e+00, 1.20023970e+01, 1.44314081e+01,
1.73519956e+01, 2.08636432e+01, 2.50859682e+01, 3.01627952e+01,
3.62670562e+01, 4.36066802e+01, 5.24316764e+01, 6.30426504e+01,
7.58010432e+01, 9.11414433e+01, 1.09586390e+02, 1.31764173e+02,
1.58430233e+02, 1.90492894e+02, 2.29044305e+02, 2.75397642e+02,
3.31131836e+02, 3.98145358e+02, 4.78720886e+02, 5.75603061e+02,
6.92091976e+02, 8.32155588e+02, 1.00056488e+03, 1.20305636e+03,
1.44652749e+03, 1.73927162e+03, 2.09126048e+03, 2.51448384e+03,
3.02335795e+03, 3.63521656e+03, 4.37090138e+03]
plt.plot(b11,a11, 'ro')
plt.yscale("log")
plt.xscale("log")
plt.show()
我想根据卡方误差最小化方法向基础图形中添加适用于更短时间的幂律和适用于更长时间的指数拟合。
以csv形式保存的x轴数据:
x轴数据:
正如我在评论中提到的,我认为您可以通过常数项将幂律和指数结合起来。或者,数据看起来可以符合两个幂律。尽管评论表明确实存在指数行为。无论如何,我在这里展示了这两种方法。在这两种情况下,我都尽量避免任何类型的 piece-wise 定义。这也确保了 $C^infty$.
在第一种方法中,我们有 a * x**( -b )
用于小 x
和 a1 * exp( -d * x )
用于大 x
。这个想法是选择一个 c
使得幂律对于所需的小 x
比 c
大得多,但在其他方面要小得多。
这允许我评论中提到的功能,即 ( a * x**( -b ) + c ) * exp( -d * x )
。可以将 c
视为转换参数。
在替代方法中,我采用了两个 power-laws。因此,有两个区域,在第一个函数中,一个较小,在第二个函数中,第二个较小。因为我总是想要较小的函数,所以我进行逆求和,即 f = 1 / ( 1 / f1 + 1 / f2 )
。从下面的代码中可以看出,我添加了一个附加参数(技术上在 ] 0,infty [ 中)。此参数控制过渡的平滑度。
import matplotlib.pyplot as mp
import numpy as np
from scipy.optimize import curve_fit
data = np.loadtxt( "7jyRi.txt", delimiter=',' )
#### p-e: power and exponential coupled via a small constant term
def func_log( x, a, b, c, d ):
return np.log10( ( a * x**( -b ) + c ) * np.exp( -d * x ) )
guess = [.1, .8, 0.01, .005 ]
testx = np.logspace( 0, 3, 150 )
testy = np.fromiter( ( 10**func_log( x, *guess ) for x in testx ), np.float )
sol, _ = curve_fit( func_log, data[ ::, 0 ], np.log10( data[::,1] ), p0=guess )
fity = np.fromiter( ( 10**func_log( x, *sol ) for x in testx ), np.float )
#### p-p: alternatively using two power laws
def double_power_log( x, a, b, c, d, k ):
s1 = ( a * x**( -b ) )**k
s2 = ( c * x**( -d ) )**k
out = 1.0 / ( 1.0 / s1 + 1.0 / s2 )**( 1.0 / k )
return np.log10( out )
aguess = [.1, .8, 1e7, 4, 1 ]
atesty = np.fromiter( ( 10**double_power_log( x, *aguess ) for x in testx ), np.float )
asol, _ = curve_fit( double_power_log, data[ ::, 0 ], np.log10( data[ ::, 1 ] ), p0=aguess )
afity = np.fromiter( ( 10**double_power_log( x, *asol ) for x in testx ), np.float )
#### plotting
fig = mp.figure( figsize=( 10, 8 ) )
ax = fig.add_subplot( 1, 1, 1 )
ax.plot( data[::,0], data[::,1] ,ls='', marker='o', label="data" )
ax.plot( testx, testy ,ls=':', label="guess p-e" )
ax.plot( testx, atesty ,ls=':',label="guess p-p" )
ax.plot( testx, fity ,ls='-',label="fit p-e: {}".format( sol ) )
ax.plot( testx, afity ,ls='-', label="fit p-p: {}".format( asol ) )
ax.set_xscale( "log" )
ax.set_yscale( "log" )
ax.set_xlim( [ 5e-1, 2e3 ] )
ax.set_ylim( [ 1e-5, 2e-1 ] )
ax.legend( loc=0 )
mp.show()
结果看起来像
为了完整起见,我想添加一个具有 piece-wise 定义的解决方案。由于我希望函数连续且可微,因此指数定律的参数不是完全自由的。使用 f = a * x**(-b)
和 g = alpha * exp( -beta * x )
以及 x0
处的转换,我选择 ( a, b, x0 )
作为自由参数。 alpha
和 beta
随之而来。虽然方程式没有简单的解决方案,因此这本身需要最小化。
import matplotlib.pyplot as mp
import numpy as np
from scipy.optimize import curve_fit
from scipy.optimize import minimize
from scipy.special import lambertw
data = np.loadtxt( "7jyRi.txt", delimiter=',' )
def pwl( x, a, b):
return a * x**( -b )
def expl( x, a, b ):
return a * np.exp( -b * x )
def alpha_fun(alpha, a, b, x0):
out = alpha - pwl( x0, a, b ) * expl(1, 1, lambertw( pwl( x0, -a * b/ alpha, b ) ) )
return 1e10 * np.abs( out )**2
def p_w( v, a,b, alpha, beta, x0 ):
if v < x0:
out = pwl( v, a, b )
else:
out = expl( v, alpha, beta )
return np.log10( out )
def alpha_beta( x, a, b, x0 ):
"""
continuous and differentiable define alpha and beta
free parameter is the point where I connect
"""
sol = minimize(alpha_fun, .005, args=( a, b, x0 ) )### attention, strongly depends on starting guess, i.e might be a catastrophic fail
alpha = sol.x[0]
# ~print alpha
beta = np.real( -lambertw( pwl( x0, -a * b/ alpha, b ) )/ x0 )
###
if isinstance( x, ( np.ndarray, list, tuple ) ):
out = list()
for v in x:
out.append( p_w( v, a, b, alpha, beta, x0 ) )
else:
out = p_w( v, a, b, alpha, beta, x0 )
return out
sol,_ = curve_fit( alpha_beta, data[ ::, 0 ], np.log10( data[ ::, 1 ] ), p0=[ .1, .8, 70. ] )
alpha0 = minimize(alpha_fun, .005, args=tuple(sol ) ).x[0]
beta0 = np.real( -lambertw( pwl( sol[2], -sol[0] * sol[1]/ alpha0, sol[1] ) )/ sol[2] )
xl = np.logspace(0,3,100)
yl = alpha_beta( xl, *sol )
pl = pwl( xl, sol[0], sol[1] )
el = expl( xl, alpha0, beta0 )
#### plotting
fig = mp.figure( figsize=( 10, 8 ) )
ax = fig.add_subplot( 1, 1, 1 )
ax.plot( data[::,0], data[::,1] ,ls='', marker='o', label="data" )
ax.plot( xl, pl ,ls=':', label="p" )
ax.plot( xl, el ,ls=':', label="{:0.3e} exp(-{:0.3e} x)".format(alpha0, beta0) )
ax.plot( xl, [10**y for y in yl] ,ls='-', label="sol: {}".format(sol) )
ax.axvline(sol[-1], color='k', ls=':')
ax.set_xscale( "log" )
ax.set_yscale( "log" )
ax.set_xlim( [ 5e-1, 2e3 ] )
ax.set_ylim( [ 1e-5, 2e-1 ] )
ax.legend( loc=0 )
mp.show()
最终提供