在多个流上重叠内核执行
Overlap kernel execution on multiple streams
我们有一个相当单一的内核(见下文),我们用一个网格、1,1 块
启动
内核<<<1,1>>>
然后它会动态触发许多较小的内核。一般来说,数据从一个内核流向另一个内核,输入从第一个内核开始并流向最后。
但是我们已经确定了一种潜在的能力,可以重叠两个数据流,每个 运行 这个相同的内核。
问题:我们是否必须放弃动态内核执行,转而采用基于主机的方法来获得两个巨型内核的执行重叠?或者卡中的调度程序是否足够聪明,可以在两个巨型内核之间交错执行并将每个巨型内核作为单独的计划项目处理?
我们正在谈论特斯拉 K80。 Linux主持人。
(是的,我们将获得与 cudamemcopyasync() 重叠执行的一些重叠,但我们也希望看到一些执行重叠)。
#include <cuda.h>
#include <cuda_runtime.h>
#include "coss_types.h"
#include "image.h"
#include "centroid.h"
#include "gpu.h"
#define GPU_TILE_WIDTH 16
#define GPU_TILE_HEIGHT 16
#define GPU_TILE_WBIG 32
#define GPU_TILE_HBIG 32
#define K_IMG_MAX 1024
__constant__ unsigned short* pFrameStack[GPU_CHX];
__constant__ unsigned short* pBackground[GPU_CHX];
__constant__ short* pCleanground[GPU_CHX];
__constant__ unsigned char* pMask[GPU_CHX];
__constant__ float* pForeground[GPU_CHX];
__constant__ float* pLowground[GPU_CHX];
__constant__ float* pLowgroundRow[GPU_CHX];
__constant__ float* pHighground[GPU_CHX];
__constant__ float* pHighgroundRow[GPU_CHX];
__constant__ float* pMins[GPU_CHX];
__constant__ float* pMaxs[GPU_CHX];
__constant__ int gSlot;
__constant__ int* pPercentile[GPU_CHX];
__constant__ int* pLabels1[GPU_CHX];
__constant__ int* pLabels2[GPU_CHX];
__constant__ int* pRawLabels[GPU_CHX];
__constant__ int* pLabels[GPU_CHX];
__constant__ ImgInfoBlock_t* pInfo[GPU_CHX];
__constant__ unsigned short* pSums[GPU_CHX];
__constant__ unsigned short* pBlockSums[GPU_CHX];
__constant__ ImgCentroid_t* pCenters[GPU_CHX];
__constant__ float threshold_sigma = 9.0f;
/* INCLUDED GENERATED CUDA CODE BELOW */
#include "cuda.cu"
/* INCLUDED GENERATED CUDA CODE ABOVE */
extern "C" __device__ void Background(int ch)
{
dim3 block;
dim3 grid;
/* Background Estimation */
block = dim3(128);
grid = dim3((IMG_PIXELS)/256); /* Only half screens at a time */
gMedian<<<grid,block>>>(
pFrameStack[ch],GPU_STACKSIZE,IMG_PIXELS,
pBackground[ch],IMG_HEIGHT,IMG_WIDTH,gSlot);
cudaDeviceSynchronize();
/* Background Removal */
block = dim3(128);
grid = dim3((IMG_PIXELS)/128);
gScrub<<<grid,block>>>(
pFrameStack[ch],GPU_STACKSIZE,IMG_PIXELS,
pBackground[ch],IMG_HEIGHT,IMG_WIDTH,
pCleanground[ch],IMG_HEIGHT,IMG_WIDTH,gSlot);
cudaDeviceSynchronize();
}
extern "C" __device__ void Convolution(int ch)
{
dim3 block;
dim3 grid;
dim3 block_b;
dim3 grid_b;
/* Convolve Rows */
block = dim3(GPU_TILE_WIDTH,GPU_TILE_HEIGHT);
grid = dim3(IMG_WIDTH/GPU_TILE_WIDTH,IMG_HEIGHT/GPU_TILE_HEIGHT);
gConvolveRow<<<grid,block>>>(
pCleanground[ch], IMG_HEIGHT,IMG_WIDTH,
pLowgroundRow[ch], IMG_HEIGHT,IMG_WIDTH);
block_b = dim3(GPU_TILE_WBIG,GPU_TILE_HBIG);
grid_b = dim3(IMG_WIDTH/GPU_TILE_WBIG,IMG_HEIGHT/GPU_TILE_HBIG);
gConvolveBigRow<<<grid_b,block_b>>>(
pCleanground[ch], IMG_HEIGHT,IMG_WIDTH,
pHighgroundRow[ch], IMG_HEIGHT,IMG_WIDTH);
/* Convolve Cols */
cudaDeviceSynchronize();
gConvolveCol<<<grid,block>>>(
pLowgroundRow[ch], IMG_HEIGHT,IMG_WIDTH,
pLowground[ch], IMG_HEIGHT,IMG_WIDTH);
gConvolveBigCol<<<grid_b,block_b>>>(
pHighgroundRow[ch], IMG_HEIGHT,IMG_WIDTH,
pHighground[ch], IMG_HEIGHT,IMG_WIDTH);
/* Band pass */
cudaDeviceSynchronize();
block = dim3(256,4);
grid = dim3(IMG_WIDTH / 256, IMG_HEIGHT / 4);
gBpass<<<grid,block>>>(
pLowground[ch], IMG_HEIGHT,IMG_WIDTH,
pHighground[ch], IMG_HEIGHT,IMG_WIDTH,
pForeground[ch], IMG_HEIGHT,IMG_WIDTH);
cudaDeviceSynchronize();
}
extern "C" __device__ void Threshold(int ch)
{
dim3 block;
dim3 grid;
/* Set the calibration sigma in Info Bloc */
pInfo[ch]->sigma = threshold_sigma;
/* Min Max kernels */
block = dim3(512, 2);
grid = dim3(IMG_WIDTH / 512, IMG_HEIGHT / 2);
gMinMax<<<grid,block>>>(
pForeground[ch],IMG_HEIGHT,IMG_WIDTH,
pMins[ch], 5 * K_IMG_MAX,
pMaxs[ch], 5 * K_IMG_MAX);
cudaDeviceSynchronize();
block = dim3(K_IMG_MAX);
grid = dim3(1);
gMinMaxMinMax<<<grid,K_IMG_MAX>>>(
pMins[ch], 5 * K_IMG_MAX,
pMaxs[ch], 5 * K_IMG_MAX,
(struct PipeInfoBlock*)pInfo[ch],1);
/* Histogram */
cudaDeviceSynchronize();
block = dim3(GPU_TILE_WBIG,GPU_TILE_HBIG);
grid = dim3(IMG_WIDTH/GPU_TILE_WBIG,IMG_HEIGHT/GPU_TILE_HBIG);
gHistogram<<<grid,block>>>(
pForeground[ch],IMG_HEIGHT,IMG_WIDTH,
pPercentile[ch],K_IMG_MAX,
(struct PipeInfoBlock*)pInfo[ch],1);
cudaDeviceSynchronize();
block = dim3(K_IMG_MAX);
grid = dim3(1);
gSumHistogram<<<grid,block>>>(pPercentile[ch],K_IMG_MAX);
cudaDeviceSynchronize();
gIQR<<<grid,block>>>(pPercentile[ch],K_IMG_MAX,(struct PipeInfoBlock*)pInfo[ch],1);
cudaDeviceSynchronize();
block = dim3(256,4);
grid = dim3(IMG_WIDTH / 256, IMG_HEIGHT / 4);
gThreshold<<<grid,block>>>(
pForeground[ch],IMG_HEIGHT,IMG_WIDTH,
pMask[ch],IMG_HEIGHT,IMG_WIDTH,
(struct PipeInfoBlock*)pInfo[ch],1);
cudaDeviceSynchronize();
}
extern "C" __device__ void Gluing(int ch)
{
dim3 block;
dim3 grid;
block = dim3(24, 24);
grid = dim3(IMG_WIDTH / 16, IMG_HEIGHT / 16);
gGlue<<<grid, block>>>(
pMask[ch],IMG_HEIGHT,IMG_WIDTH,
pMask[ch],IMG_HEIGHT,IMG_WIDTH);
cudaDeviceSynchronize();
}
extern "C" __device__ void Labeling(int ch)
{
dim3 block;
dim3 grid;
/* CCL */
//block = dim3(1, 128);
//grid = dim3(1, IMG_HEIGHT / 128);
block = dim3(256,1);
grid = dim3(IMG_WIDTH/256,IMG_HEIGHT);
gCCL0<<<grid, block>>>(
pMask[ch],IMG_HEIGHT,IMG_WIDTH,
pRawLabels[ch],IMG_HEIGHT,IMG_WIDTH);
cudaDeviceSynchronize();
block = dim3(24, 24);
grid = dim3(IMG_WIDTH / 16, IMG_HEIGHT / 16);
gCCLMerge<<<grid, block>>>(
pRawLabels[ch],IMG_HEIGHT,IMG_WIDTH,
pRawLabels[ch],IMG_HEIGHT,IMG_WIDTH);
cudaDeviceSynchronize();
gCCLMerge<<<grid, block>>>(
pRawLabels[ch],IMG_HEIGHT,IMG_WIDTH,
pRawLabels[ch],IMG_HEIGHT,IMG_WIDTH);
cudaDeviceSynchronize();
gCCLMerge<<<grid, block>>>(
pRawLabels[ch],IMG_HEIGHT,IMG_WIDTH,
pRawLabels[ch],IMG_HEIGHT,IMG_WIDTH);
cudaDeviceSynchronize();
}
extern "C" __device__ void Relabeling(int ch)
{
dim3 block;
dim3 grid;
/* Relabel */
block = dim3(160, 1);
grid = dim3(IMG_WIDTH / 160, IMG_HEIGHT / 1);
gScan<<<grid, block>>>(
pRawLabels[ch],IMG_HEIGHT,IMG_WIDTH,
pSums[ch],IMG_PIXELS);
cudaDeviceSynchronize();
grid = dim3(IMG_PIXELS / K_IMG_MAX);
gSum<<<grid, K_IMG_MAX>>>(pSums[ch],IMG_PIXELS, pBlockSums[ch], 5*K_IMG_MAX);
cudaDeviceSynchronize();
grid = dim3(1);
gSumBlocks<<<grid, K_IMG_MAX>>>(pBlockSums[ch], 5*K_IMG_MAX, (struct PipeInfoBlock*)pInfo[ch],1);
cudaDeviceSynchronize();
grid = dim3(IMG_PIXELS / K_IMG_MAX);
gFixSums<<<grid, K_IMG_MAX>>>(pSums[ch],IMG_PIXELS, pBlockSums[ch], 5*K_IMG_MAX);
cudaDeviceSynchronize();
block = dim3(160, 1);
grid = dim3(IMG_WIDTH / 160, IMG_HEIGHT / 1);
gRelabeler<<<grid, block>>>(
pRawLabels[ch],IMG_HEIGHT,IMG_WIDTH,
pSums[ch],IMG_PIXELS,
pLabels[ch], IMG_HEIGHT,IMG_WIDTH);
cudaDeviceSynchronize();
}
extern "C" __device__ void Centroiding(int ch)
{
dim3 block;
dim3 grid;
int starcount = IMG_STARS_MAX;
if (pInfo[ch]->starCount > 0 && pInfo[ch]->starCount < IMG_STARS_MAX)
{
starcount = pInfo[ch]->starCount;
/* Centroid */
block = dim3(32, 32);
grid = dim3(IMG_WIDTH / 32, IMG_HEIGHT / 32);
gCentroid<<<grid, block>>>(
pLabels[ch], IMG_HEIGHT,IMG_WIDTH,
pForeground[ch],IMG_HEIGHT,IMG_WIDTH,
(PipeCentroid *)pCenters[ch],starcount);
cudaDeviceSynchronize();
block = dim3(starcount);
gCentroidFinal<<<1, block>>>((PipeCentroid *)pCenters[ch],starcount);
cudaDeviceSynchronize();
}
else
{
pInfo[ch]->starCount = 0;
}
}
extern "C" __global__ void gPipeline(int gpuId)
{ int ch;
for(ch=0; ch < GPU_CHX; ch++)
{
Background(ch);
Convolution(ch);
Threshold(ch);
Gluing(ch);
Labeling(ch);
Relabeling(ch);
Centroiding(ch);
}
}
extern "C" {
static void ImgKernel_ClearBuffers(int32_t gpu, int32_t ch)
{
/* Clear Work Buffers */
cudaMemset(gInfo[gpu][ch],0,(int)sizeof(ImgInfoBlock_t));
cudaMemset(gCenters[gpu][ch],0,(int)sizeof(ImgCentroid_t)*IMG_STARS_MAX);
cudaMemset(gPercentile[gpu][ch],0,(int)sizeof(int32_t)*K_IMG_MAX);
cudaMemset(gLabels1[gpu][ch],0,(int)sizeof(int32_t) *IMG_PIXELS);
cudaMemset(gLabels2[gpu][ch],0,(int)sizeof(int32_t) *IMG_PIXELS);
cudaMemset(gRawLabels[gpu][ch],0,(int)sizeof(int32_t) *IMG_PIXELS);
cudaMemset(gSums[gpu][ch],0,(int)IMG_BYTES);
cudaMemset(gBlockSums[gpu][ch],0,(int)sizeof(uint16_t)*5*K_IMG_MAX);
}
void ImgKernel_Pipeline(int gpu)
{
cudaSetDevice(gpu);
cudaDeviceSynchronize();
/* Start a new run by clearing the buffers */
ImgKernel_ClearBuffers(gpu,GPU_CH0);
ImgKernel_ClearBuffers(gpu,GPU_CH1);
/* Update Constants */
cudaMemcpyToSymbol(gSlot,(void*)&slot,sizeof(slot));
cudaMemcpyToSymbol(threshold_sigma,(void*)&sigmaThreshold,sizeof(sigmaThreshold));
/* Start the next pipeline kernel */
gPipeline<<<1,1>>>(gpu);
}
#define LFILTER_LEN 15
static float lFilter[LFILTER_LEN] = { .0009f, .01f,
.02f, .05f, .08f, .10f, .1325f, .1411f, .1325f, .10f, .08f, .05f, .02f, .01f, .0009f };
#define HFILTER_LEN 31
static float hFilter[HFILTER_LEN] = {0.0002f, 0.0006f,
0.0025f, 0.0037f, 0.0053f, 0.0074f, 0.0099f, 0.0130f, 0.0164f,
0.0201f, 0.0239f, 0.0275f, 0.0306f, 0.0331f, 0.0347f, 0.0353f,
0.0347f, 0.0331f, 0.0306f, 0.0275f, 0.0239f, 0.0201f, 0.0164f,
0.0130f, 0.0099f, 0.0074f, 0.0053f, 0.0037f, 0.0025f, 0.0006f, 0.0002f};
static float32_t kernel[LFILTER_LEN];
static float32_t kernelBig[HFILTER_LEN];
static inline float32_t ImgKernel_FilterSum(float* arr, int32_t len)
{
int32_t i;
float32_t sum = 0.0f;
for (i=0;i<len;i++) sum += arr[i];
return sum;
}
void ImgKernel_Setup(int gpu)
{
int32_t i,ch;
float32_t sum = 0;
sum = ImgKernel_FilterSum(lFilter,LFILTER_LEN);
for (i = 0; i < LFILTER_LEN; i++) kernel[i] = lFilter[i] / sum;
sum = ImgKernel_FilterSum(hFilter,HFILTER_LEN);
for (i = 0; i < HFILTER_LEN; i++) kernelBig[i] = hFilter[i] / sum;
/* One time copy of locations into GPU constant memory */
cudaMemcpyToSymbol(gkernel, (void*)&kernel, sizeof(float32_t)*LFILTER_LEN);
cudaMemcpyToSymbol(gkernelBig, (void*)&kernelBig, sizeof(float32_t)*HFILTER_LEN);
cudaMemcpyToSymbol(pFrameStack,(void*)&gFrameStack[gpu][0], sizeof(uint16_t*)*GPU_CHX);
cudaMemcpyToSymbol(pBackground,(void*)&gBackground[gpu][0], sizeof(uint16_t*)*GPU_CHX);
cudaMemcpyToSymbol(pCleanground,(void*)&gCleanground[gpu][0], sizeof(int16_t*)*GPU_CHX);
cudaMemcpyToSymbol(pLowground, (void*)&gLowground[gpu][0], sizeof(float32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pLowgroundRow,(void*)&gLowgroundRow[gpu][0],sizeof(float32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pHighground,(void*)&gHighground[gpu][0], sizeof(float32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pHighgroundRow,(void*)&gHighgroundRow[gpu][0],sizeof(float32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pForeground,(void*)&gForeground[gpu][0], sizeof(float32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pMask, (void*)&gMask[gpu][0], sizeof(uint8_t*)*GPU_CHX);
cudaMemcpyToSymbol(pPercentile,(void*)&gPercentile[gpu][0], sizeof(int32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pMins, (void*)&gMins[gpu][0], sizeof(float32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pMaxs, (void*)&gMaxs[gpu][0], sizeof(float32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pLabels1, (void*)&gLabels1[gpu][0], sizeof(int32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pLabels2, (void*)&gLabels2[gpu][0], sizeof(int32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pRawLabels, (void*)&gRawLabels[gpu][0], sizeof(int32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pLabels, (void*)&gLabels[gpu][0], sizeof(int32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pInfo, (void*)&gInfo[gpu][0], sizeof(ImgInfoBlock_t*)*GPU_CHX);
cudaMemcpyToSymbol(pSums, (void*)&gSums[gpu][0], sizeof(uint16_t*)*GPU_CHX);
cudaMemcpyToSymbol(pBlockSums, (void*)&gBlockSums[gpu][0], sizeof(uint16_t*)*GPU_CHX);
cudaMemcpyToSymbol(pCenters, (void*)&gCenters[gpu][0], sizeof(ImgCentroid_t*)*GPU_CHX);
for (ch = 0; ch < GPU_CHX; ch++)
{
/* Clear the working buffers */
ImgKernel_ClearBuffers(gpu,ch);
}
}
}
对于在不同的主机流中启动的两个动态并行内核,父内核和子内核应该可以共存(即同时执行)。
如何让事情同时 运行 是一个常见问题。一旦满足所有 the requirements,您是否真正见证并发内核执行将取决于每个内核消耗的资源:每个块有多少个线程、线程块总数有多少、寄存器有多少以及共享的有多少内存是资源类型的几个例子,如果被一个内核消耗,可能会阻止另一个内核的并发执行,即使所有要求都已满足。
机器没有无限容量。一旦机器的容量被消耗掉,暴露额外的并行性(例如通过尝试同时启动独立内核)可能不会产生任何改进。
GPU 调度行为可能会影响这一点,正如 Greg 所指出的那样。根据特定的 GPU 和 CUDA 版本以及可能的其他因素,具有大量线程块的两个内核可能不会执行 "concurrently" 仅仅是因为一个内核的线程块可能在另一个内核的任何线程块被调度之前全部被调度。在我看来,这种行为只是资源问题的另一种表现。 (另请注意,个别内核的线程块调度也可能受到 stream priorities 的影响)。
然而,如果我们小心地限制资源使用,两个动态并行内核的父内核和子内核可能共存,即同时执行。这是一个有效的示例(CUDA 7、Fedora 20、GeForce GT640 cc3.5 GPU):
$ cat t815.cu
#include <stdio.h>
#define DELAY_VAL 5000000000ULL
__global__ void child(){
unsigned long long start = clock64();
while (clock64()< start+DELAY_VAL);
}
__global__ void parent(){
child<<<1,1>>>();
}
int main(int argc, char* argv[]){
cudaStream_t st1, st2;
cudaStreamCreate(&st1);
cudaStreamCreate(&st2);
parent<<<1,1,0,st1>>>();
if (argc > 1){
printf("running double kernel\n");
parent<<<1,1,0,st2>>>();
}
cudaDeviceSynchronize();
}
$ nvcc -arch=sm_35 -rdc=true -lcudadevrt t815.cu -o t815
$ time ./t815
3.65user 1.88system 0:05.65elapsed 97%CPU (0avgtext+0avgdata 82192maxresident)k
0inputs+0outputs (0major+2812minor)pagefaults 0swaps
$ time ./t815 double
running double kernel
3.68user 1.83system 0:05.64elapsed 97%CPU (0avgtext+0avgdata 82200maxresident)k
0inputs+0outputs (0major+2814minor)pagefaults 0swaps
$ time cuda-memcheck ./t815
========= CUDA-MEMCHECK
========= ERROR SUMMARY: 0 errors
3.16user 2.25system 0:05.68elapsed 95%CPU (0avgtext+0avgdata 87040maxresident)k
0inputs+0outputs (0major+4573minor)pagefaults 0swaps
$ time cuda-memcheck ./t815 double
========= CUDA-MEMCHECK
running double kernel
========= ERROR SUMMARY: 0 errors
7.27user 3.04system 0:10.46elapsed 98%CPU (0avgtext+0avgdata 87116maxresident)k
0inputs+0outputs (0major+4594minor)pagefaults 0swaps
$
在这种情况下,我们看到如果我不使用 cuda-memcheck
,那么无论我 运行 一个或两个(父)内核副本在单独的主机流中,执行时间大致相同(~5.6s)。由于执行时间相同,不可避免的结论是这些内核正在并发执行(父内核和子内核)。这并不奇怪,因为这些内核使用的资源很少。 (每个一个线程块,每个线程块,寄存器使用率非常低,没有共享内存使用率)。
另一方面,如果我运行与cuda-memcheck
进行同样的测试,则有明显的序列化,因为虽然单个内核启动时间相对不受影响,但两个"concurrent" 内核启动大约是两倍。
我们有一个相当单一的内核(见下文),我们用一个网格、1,1 块
启动内核<<<1,1>>>
然后它会动态触发许多较小的内核。一般来说,数据从一个内核流向另一个内核,输入从第一个内核开始并流向最后。
但是我们已经确定了一种潜在的能力,可以重叠两个数据流,每个 运行 这个相同的内核。
问题:我们是否必须放弃动态内核执行,转而采用基于主机的方法来获得两个巨型内核的执行重叠?或者卡中的调度程序是否足够聪明,可以在两个巨型内核之间交错执行并将每个巨型内核作为单独的计划项目处理?
我们正在谈论特斯拉 K80。 Linux主持人。
(是的,我们将获得与 cudamemcopyasync() 重叠执行的一些重叠,但我们也希望看到一些执行重叠)。
#include <cuda.h>
#include <cuda_runtime.h>
#include "coss_types.h"
#include "image.h"
#include "centroid.h"
#include "gpu.h"
#define GPU_TILE_WIDTH 16
#define GPU_TILE_HEIGHT 16
#define GPU_TILE_WBIG 32
#define GPU_TILE_HBIG 32
#define K_IMG_MAX 1024
__constant__ unsigned short* pFrameStack[GPU_CHX];
__constant__ unsigned short* pBackground[GPU_CHX];
__constant__ short* pCleanground[GPU_CHX];
__constant__ unsigned char* pMask[GPU_CHX];
__constant__ float* pForeground[GPU_CHX];
__constant__ float* pLowground[GPU_CHX];
__constant__ float* pLowgroundRow[GPU_CHX];
__constant__ float* pHighground[GPU_CHX];
__constant__ float* pHighgroundRow[GPU_CHX];
__constant__ float* pMins[GPU_CHX];
__constant__ float* pMaxs[GPU_CHX];
__constant__ int gSlot;
__constant__ int* pPercentile[GPU_CHX];
__constant__ int* pLabels1[GPU_CHX];
__constant__ int* pLabels2[GPU_CHX];
__constant__ int* pRawLabels[GPU_CHX];
__constant__ int* pLabels[GPU_CHX];
__constant__ ImgInfoBlock_t* pInfo[GPU_CHX];
__constant__ unsigned short* pSums[GPU_CHX];
__constant__ unsigned short* pBlockSums[GPU_CHX];
__constant__ ImgCentroid_t* pCenters[GPU_CHX];
__constant__ float threshold_sigma = 9.0f;
/* INCLUDED GENERATED CUDA CODE BELOW */
#include "cuda.cu"
/* INCLUDED GENERATED CUDA CODE ABOVE */
extern "C" __device__ void Background(int ch)
{
dim3 block;
dim3 grid;
/* Background Estimation */
block = dim3(128);
grid = dim3((IMG_PIXELS)/256); /* Only half screens at a time */
gMedian<<<grid,block>>>(
pFrameStack[ch],GPU_STACKSIZE,IMG_PIXELS,
pBackground[ch],IMG_HEIGHT,IMG_WIDTH,gSlot);
cudaDeviceSynchronize();
/* Background Removal */
block = dim3(128);
grid = dim3((IMG_PIXELS)/128);
gScrub<<<grid,block>>>(
pFrameStack[ch],GPU_STACKSIZE,IMG_PIXELS,
pBackground[ch],IMG_HEIGHT,IMG_WIDTH,
pCleanground[ch],IMG_HEIGHT,IMG_WIDTH,gSlot);
cudaDeviceSynchronize();
}
extern "C" __device__ void Convolution(int ch)
{
dim3 block;
dim3 grid;
dim3 block_b;
dim3 grid_b;
/* Convolve Rows */
block = dim3(GPU_TILE_WIDTH,GPU_TILE_HEIGHT);
grid = dim3(IMG_WIDTH/GPU_TILE_WIDTH,IMG_HEIGHT/GPU_TILE_HEIGHT);
gConvolveRow<<<grid,block>>>(
pCleanground[ch], IMG_HEIGHT,IMG_WIDTH,
pLowgroundRow[ch], IMG_HEIGHT,IMG_WIDTH);
block_b = dim3(GPU_TILE_WBIG,GPU_TILE_HBIG);
grid_b = dim3(IMG_WIDTH/GPU_TILE_WBIG,IMG_HEIGHT/GPU_TILE_HBIG);
gConvolveBigRow<<<grid_b,block_b>>>(
pCleanground[ch], IMG_HEIGHT,IMG_WIDTH,
pHighgroundRow[ch], IMG_HEIGHT,IMG_WIDTH);
/* Convolve Cols */
cudaDeviceSynchronize();
gConvolveCol<<<grid,block>>>(
pLowgroundRow[ch], IMG_HEIGHT,IMG_WIDTH,
pLowground[ch], IMG_HEIGHT,IMG_WIDTH);
gConvolveBigCol<<<grid_b,block_b>>>(
pHighgroundRow[ch], IMG_HEIGHT,IMG_WIDTH,
pHighground[ch], IMG_HEIGHT,IMG_WIDTH);
/* Band pass */
cudaDeviceSynchronize();
block = dim3(256,4);
grid = dim3(IMG_WIDTH / 256, IMG_HEIGHT / 4);
gBpass<<<grid,block>>>(
pLowground[ch], IMG_HEIGHT,IMG_WIDTH,
pHighground[ch], IMG_HEIGHT,IMG_WIDTH,
pForeground[ch], IMG_HEIGHT,IMG_WIDTH);
cudaDeviceSynchronize();
}
extern "C" __device__ void Threshold(int ch)
{
dim3 block;
dim3 grid;
/* Set the calibration sigma in Info Bloc */
pInfo[ch]->sigma = threshold_sigma;
/* Min Max kernels */
block = dim3(512, 2);
grid = dim3(IMG_WIDTH / 512, IMG_HEIGHT / 2);
gMinMax<<<grid,block>>>(
pForeground[ch],IMG_HEIGHT,IMG_WIDTH,
pMins[ch], 5 * K_IMG_MAX,
pMaxs[ch], 5 * K_IMG_MAX);
cudaDeviceSynchronize();
block = dim3(K_IMG_MAX);
grid = dim3(1);
gMinMaxMinMax<<<grid,K_IMG_MAX>>>(
pMins[ch], 5 * K_IMG_MAX,
pMaxs[ch], 5 * K_IMG_MAX,
(struct PipeInfoBlock*)pInfo[ch],1);
/* Histogram */
cudaDeviceSynchronize();
block = dim3(GPU_TILE_WBIG,GPU_TILE_HBIG);
grid = dim3(IMG_WIDTH/GPU_TILE_WBIG,IMG_HEIGHT/GPU_TILE_HBIG);
gHistogram<<<grid,block>>>(
pForeground[ch],IMG_HEIGHT,IMG_WIDTH,
pPercentile[ch],K_IMG_MAX,
(struct PipeInfoBlock*)pInfo[ch],1);
cudaDeviceSynchronize();
block = dim3(K_IMG_MAX);
grid = dim3(1);
gSumHistogram<<<grid,block>>>(pPercentile[ch],K_IMG_MAX);
cudaDeviceSynchronize();
gIQR<<<grid,block>>>(pPercentile[ch],K_IMG_MAX,(struct PipeInfoBlock*)pInfo[ch],1);
cudaDeviceSynchronize();
block = dim3(256,4);
grid = dim3(IMG_WIDTH / 256, IMG_HEIGHT / 4);
gThreshold<<<grid,block>>>(
pForeground[ch],IMG_HEIGHT,IMG_WIDTH,
pMask[ch],IMG_HEIGHT,IMG_WIDTH,
(struct PipeInfoBlock*)pInfo[ch],1);
cudaDeviceSynchronize();
}
extern "C" __device__ void Gluing(int ch)
{
dim3 block;
dim3 grid;
block = dim3(24, 24);
grid = dim3(IMG_WIDTH / 16, IMG_HEIGHT / 16);
gGlue<<<grid, block>>>(
pMask[ch],IMG_HEIGHT,IMG_WIDTH,
pMask[ch],IMG_HEIGHT,IMG_WIDTH);
cudaDeviceSynchronize();
}
extern "C" __device__ void Labeling(int ch)
{
dim3 block;
dim3 grid;
/* CCL */
//block = dim3(1, 128);
//grid = dim3(1, IMG_HEIGHT / 128);
block = dim3(256,1);
grid = dim3(IMG_WIDTH/256,IMG_HEIGHT);
gCCL0<<<grid, block>>>(
pMask[ch],IMG_HEIGHT,IMG_WIDTH,
pRawLabels[ch],IMG_HEIGHT,IMG_WIDTH);
cudaDeviceSynchronize();
block = dim3(24, 24);
grid = dim3(IMG_WIDTH / 16, IMG_HEIGHT / 16);
gCCLMerge<<<grid, block>>>(
pRawLabels[ch],IMG_HEIGHT,IMG_WIDTH,
pRawLabels[ch],IMG_HEIGHT,IMG_WIDTH);
cudaDeviceSynchronize();
gCCLMerge<<<grid, block>>>(
pRawLabels[ch],IMG_HEIGHT,IMG_WIDTH,
pRawLabels[ch],IMG_HEIGHT,IMG_WIDTH);
cudaDeviceSynchronize();
gCCLMerge<<<grid, block>>>(
pRawLabels[ch],IMG_HEIGHT,IMG_WIDTH,
pRawLabels[ch],IMG_HEIGHT,IMG_WIDTH);
cudaDeviceSynchronize();
}
extern "C" __device__ void Relabeling(int ch)
{
dim3 block;
dim3 grid;
/* Relabel */
block = dim3(160, 1);
grid = dim3(IMG_WIDTH / 160, IMG_HEIGHT / 1);
gScan<<<grid, block>>>(
pRawLabels[ch],IMG_HEIGHT,IMG_WIDTH,
pSums[ch],IMG_PIXELS);
cudaDeviceSynchronize();
grid = dim3(IMG_PIXELS / K_IMG_MAX);
gSum<<<grid, K_IMG_MAX>>>(pSums[ch],IMG_PIXELS, pBlockSums[ch], 5*K_IMG_MAX);
cudaDeviceSynchronize();
grid = dim3(1);
gSumBlocks<<<grid, K_IMG_MAX>>>(pBlockSums[ch], 5*K_IMG_MAX, (struct PipeInfoBlock*)pInfo[ch],1);
cudaDeviceSynchronize();
grid = dim3(IMG_PIXELS / K_IMG_MAX);
gFixSums<<<grid, K_IMG_MAX>>>(pSums[ch],IMG_PIXELS, pBlockSums[ch], 5*K_IMG_MAX);
cudaDeviceSynchronize();
block = dim3(160, 1);
grid = dim3(IMG_WIDTH / 160, IMG_HEIGHT / 1);
gRelabeler<<<grid, block>>>(
pRawLabels[ch],IMG_HEIGHT,IMG_WIDTH,
pSums[ch],IMG_PIXELS,
pLabels[ch], IMG_HEIGHT,IMG_WIDTH);
cudaDeviceSynchronize();
}
extern "C" __device__ void Centroiding(int ch)
{
dim3 block;
dim3 grid;
int starcount = IMG_STARS_MAX;
if (pInfo[ch]->starCount > 0 && pInfo[ch]->starCount < IMG_STARS_MAX)
{
starcount = pInfo[ch]->starCount;
/* Centroid */
block = dim3(32, 32);
grid = dim3(IMG_WIDTH / 32, IMG_HEIGHT / 32);
gCentroid<<<grid, block>>>(
pLabels[ch], IMG_HEIGHT,IMG_WIDTH,
pForeground[ch],IMG_HEIGHT,IMG_WIDTH,
(PipeCentroid *)pCenters[ch],starcount);
cudaDeviceSynchronize();
block = dim3(starcount);
gCentroidFinal<<<1, block>>>((PipeCentroid *)pCenters[ch],starcount);
cudaDeviceSynchronize();
}
else
{
pInfo[ch]->starCount = 0;
}
}
extern "C" __global__ void gPipeline(int gpuId)
{ int ch;
for(ch=0; ch < GPU_CHX; ch++)
{
Background(ch);
Convolution(ch);
Threshold(ch);
Gluing(ch);
Labeling(ch);
Relabeling(ch);
Centroiding(ch);
}
}
extern "C" {
static void ImgKernel_ClearBuffers(int32_t gpu, int32_t ch)
{
/* Clear Work Buffers */
cudaMemset(gInfo[gpu][ch],0,(int)sizeof(ImgInfoBlock_t));
cudaMemset(gCenters[gpu][ch],0,(int)sizeof(ImgCentroid_t)*IMG_STARS_MAX);
cudaMemset(gPercentile[gpu][ch],0,(int)sizeof(int32_t)*K_IMG_MAX);
cudaMemset(gLabels1[gpu][ch],0,(int)sizeof(int32_t) *IMG_PIXELS);
cudaMemset(gLabels2[gpu][ch],0,(int)sizeof(int32_t) *IMG_PIXELS);
cudaMemset(gRawLabels[gpu][ch],0,(int)sizeof(int32_t) *IMG_PIXELS);
cudaMemset(gSums[gpu][ch],0,(int)IMG_BYTES);
cudaMemset(gBlockSums[gpu][ch],0,(int)sizeof(uint16_t)*5*K_IMG_MAX);
}
void ImgKernel_Pipeline(int gpu)
{
cudaSetDevice(gpu);
cudaDeviceSynchronize();
/* Start a new run by clearing the buffers */
ImgKernel_ClearBuffers(gpu,GPU_CH0);
ImgKernel_ClearBuffers(gpu,GPU_CH1);
/* Update Constants */
cudaMemcpyToSymbol(gSlot,(void*)&slot,sizeof(slot));
cudaMemcpyToSymbol(threshold_sigma,(void*)&sigmaThreshold,sizeof(sigmaThreshold));
/* Start the next pipeline kernel */
gPipeline<<<1,1>>>(gpu);
}
#define LFILTER_LEN 15
static float lFilter[LFILTER_LEN] = { .0009f, .01f,
.02f, .05f, .08f, .10f, .1325f, .1411f, .1325f, .10f, .08f, .05f, .02f, .01f, .0009f };
#define HFILTER_LEN 31
static float hFilter[HFILTER_LEN] = {0.0002f, 0.0006f,
0.0025f, 0.0037f, 0.0053f, 0.0074f, 0.0099f, 0.0130f, 0.0164f,
0.0201f, 0.0239f, 0.0275f, 0.0306f, 0.0331f, 0.0347f, 0.0353f,
0.0347f, 0.0331f, 0.0306f, 0.0275f, 0.0239f, 0.0201f, 0.0164f,
0.0130f, 0.0099f, 0.0074f, 0.0053f, 0.0037f, 0.0025f, 0.0006f, 0.0002f};
static float32_t kernel[LFILTER_LEN];
static float32_t kernelBig[HFILTER_LEN];
static inline float32_t ImgKernel_FilterSum(float* arr, int32_t len)
{
int32_t i;
float32_t sum = 0.0f;
for (i=0;i<len;i++) sum += arr[i];
return sum;
}
void ImgKernel_Setup(int gpu)
{
int32_t i,ch;
float32_t sum = 0;
sum = ImgKernel_FilterSum(lFilter,LFILTER_LEN);
for (i = 0; i < LFILTER_LEN; i++) kernel[i] = lFilter[i] / sum;
sum = ImgKernel_FilterSum(hFilter,HFILTER_LEN);
for (i = 0; i < HFILTER_LEN; i++) kernelBig[i] = hFilter[i] / sum;
/* One time copy of locations into GPU constant memory */
cudaMemcpyToSymbol(gkernel, (void*)&kernel, sizeof(float32_t)*LFILTER_LEN);
cudaMemcpyToSymbol(gkernelBig, (void*)&kernelBig, sizeof(float32_t)*HFILTER_LEN);
cudaMemcpyToSymbol(pFrameStack,(void*)&gFrameStack[gpu][0], sizeof(uint16_t*)*GPU_CHX);
cudaMemcpyToSymbol(pBackground,(void*)&gBackground[gpu][0], sizeof(uint16_t*)*GPU_CHX);
cudaMemcpyToSymbol(pCleanground,(void*)&gCleanground[gpu][0], sizeof(int16_t*)*GPU_CHX);
cudaMemcpyToSymbol(pLowground, (void*)&gLowground[gpu][0], sizeof(float32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pLowgroundRow,(void*)&gLowgroundRow[gpu][0],sizeof(float32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pHighground,(void*)&gHighground[gpu][0], sizeof(float32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pHighgroundRow,(void*)&gHighgroundRow[gpu][0],sizeof(float32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pForeground,(void*)&gForeground[gpu][0], sizeof(float32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pMask, (void*)&gMask[gpu][0], sizeof(uint8_t*)*GPU_CHX);
cudaMemcpyToSymbol(pPercentile,(void*)&gPercentile[gpu][0], sizeof(int32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pMins, (void*)&gMins[gpu][0], sizeof(float32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pMaxs, (void*)&gMaxs[gpu][0], sizeof(float32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pLabels1, (void*)&gLabels1[gpu][0], sizeof(int32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pLabels2, (void*)&gLabels2[gpu][0], sizeof(int32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pRawLabels, (void*)&gRawLabels[gpu][0], sizeof(int32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pLabels, (void*)&gLabels[gpu][0], sizeof(int32_t*)*GPU_CHX);
cudaMemcpyToSymbol(pInfo, (void*)&gInfo[gpu][0], sizeof(ImgInfoBlock_t*)*GPU_CHX);
cudaMemcpyToSymbol(pSums, (void*)&gSums[gpu][0], sizeof(uint16_t*)*GPU_CHX);
cudaMemcpyToSymbol(pBlockSums, (void*)&gBlockSums[gpu][0], sizeof(uint16_t*)*GPU_CHX);
cudaMemcpyToSymbol(pCenters, (void*)&gCenters[gpu][0], sizeof(ImgCentroid_t*)*GPU_CHX);
for (ch = 0; ch < GPU_CHX; ch++)
{
/* Clear the working buffers */
ImgKernel_ClearBuffers(gpu,ch);
}
}
}
对于在不同的主机流中启动的两个动态并行内核,父内核和子内核应该可以共存(即同时执行)。
如何让事情同时 运行 是一个常见问题。一旦满足所有 the requirements,您是否真正见证并发内核执行将取决于每个内核消耗的资源:每个块有多少个线程、线程块总数有多少、寄存器有多少以及共享的有多少内存是资源类型的几个例子,如果被一个内核消耗,可能会阻止另一个内核的并发执行,即使所有要求都已满足。
机器没有无限容量。一旦机器的容量被消耗掉,暴露额外的并行性(例如通过尝试同时启动独立内核)可能不会产生任何改进。
GPU 调度行为可能会影响这一点,正如 Greg 所指出的那样。根据特定的 GPU 和 CUDA 版本以及可能的其他因素,具有大量线程块的两个内核可能不会执行 "concurrently" 仅仅是因为一个内核的线程块可能在另一个内核的任何线程块被调度之前全部被调度。在我看来,这种行为只是资源问题的另一种表现。 (另请注意,个别内核的线程块调度也可能受到 stream priorities 的影响)。
然而,如果我们小心地限制资源使用,两个动态并行内核的父内核和子内核可能共存,即同时执行。这是一个有效的示例(CUDA 7、Fedora 20、GeForce GT640 cc3.5 GPU):
$ cat t815.cu
#include <stdio.h>
#define DELAY_VAL 5000000000ULL
__global__ void child(){
unsigned long long start = clock64();
while (clock64()< start+DELAY_VAL);
}
__global__ void parent(){
child<<<1,1>>>();
}
int main(int argc, char* argv[]){
cudaStream_t st1, st2;
cudaStreamCreate(&st1);
cudaStreamCreate(&st2);
parent<<<1,1,0,st1>>>();
if (argc > 1){
printf("running double kernel\n");
parent<<<1,1,0,st2>>>();
}
cudaDeviceSynchronize();
}
$ nvcc -arch=sm_35 -rdc=true -lcudadevrt t815.cu -o t815
$ time ./t815
3.65user 1.88system 0:05.65elapsed 97%CPU (0avgtext+0avgdata 82192maxresident)k
0inputs+0outputs (0major+2812minor)pagefaults 0swaps
$ time ./t815 double
running double kernel
3.68user 1.83system 0:05.64elapsed 97%CPU (0avgtext+0avgdata 82200maxresident)k
0inputs+0outputs (0major+2814minor)pagefaults 0swaps
$ time cuda-memcheck ./t815
========= CUDA-MEMCHECK
========= ERROR SUMMARY: 0 errors
3.16user 2.25system 0:05.68elapsed 95%CPU (0avgtext+0avgdata 87040maxresident)k
0inputs+0outputs (0major+4573minor)pagefaults 0swaps
$ time cuda-memcheck ./t815 double
========= CUDA-MEMCHECK
running double kernel
========= ERROR SUMMARY: 0 errors
7.27user 3.04system 0:10.46elapsed 98%CPU (0avgtext+0avgdata 87116maxresident)k
0inputs+0outputs (0major+4594minor)pagefaults 0swaps
$
在这种情况下,我们看到如果我不使用 cuda-memcheck
,那么无论我 运行 一个或两个(父)内核副本在单独的主机流中,执行时间大致相同(~5.6s)。由于执行时间相同,不可避免的结论是这些内核正在并发执行(父内核和子内核)。这并不奇怪,因为这些内核使用的资源很少。 (每个一个线程块,每个线程块,寄存器使用率非常低,没有共享内存使用率)。
另一方面,如果我运行与cuda-memcheck
进行同样的测试,则有明显的序列化,因为虽然单个内核启动时间相对不受影响,但两个"concurrent" 内核启动大约是两倍。