Python:从数据趋势中找出异常值

Python: finding outliers from a trend of data

请注意,此 post 未复制到 SO 上的以下任何相关部分:

我在实验中得到了数据:


    import matplotlib.pyplot as plt
    
    x = [22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50]
    y_NaOH = [94.2, 146.2, 222.2, 276.2, 336.2, 372.2, 428.2, 542.2, 576.2, 684.2, 766.2, 848.2, 904.2, 1042.2, 1136.2]
    y_NaHCO3 = [232.0, 308.0, 322.0, 374.0, 436.0, 494.0, 592.0, 660.0, 704.0, 824.0, 900.0, 958.0, 1048.0, 1138.0, 1232.0]
    y_BaOH2 = [493.1, 533.1, 549.1, 607.1, 665.1, 731.1, 797.1, 867.1, 971.1, 1007.1, 1091.1, 1221.1, 1311.1, 1371.1, 1497.1, ]
    
    plt.plot(x, y_NaOH)
    plt.plot(x, y_NaHCO3)
    plt.plot(x, y_BaOH2)
    plt.show()

但是,我在标记异常值时遇到了问题,这是我尝试过的方法:


    import matplotlib.pyplot as plt
    import statistics
    
    x = [22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50]
    y_NaOH = [94.2, 146.2, 222.2, 276.2, 336.2, 372.2, 428.2, 542.2, 576.2, 684.2, 766.2, 848.2, 904.2, 1042.2, 1136.2]
    y_NaHCO3 = [232.0, 308.0, 322.0, 374.0, 436.0, 494.0, 592.0, 660.0, 704.0, 824.0, 900.0, 958.0, 1048.0, 1138.0, 1232.0]
    y_BaOH2 = [493.1, 533.1, 549.1, 607.1, 665.1, 731.1, 797.1, 867.1, 971.1, 1007.1, 1091.1, 1221.1, 1311.1, 1371.1, 1497.1, ]
    
    # plt.plot(x, y_NaOH)
    # plt.plot(x, y_NaHCO3)
    # plt.plot(x, y_BaOH2)
    # plt.show()
    
    
    def detect_outlier(data_1):
        threshold = 1
        mean_1 = statistics.mean(data_1)
        std_1 = statistics.stdev(data_1)
        result_dataset = [y  for y in data_1 if abs((y - mean_1)/std_1)<=threshold ]
    
        return result_dataset
    
    
    if __name__=="__main__":
        dataset = y_NaHCO3
        result_dataset = detect_outlier(dataset)
        print(result_dataset)
        # [374.0, 436.0, 494.0, 592.0, 660.0, 704.0, 824.0, 900.0, 958.0]

错误地,这种​​方法总是过滤掉我数据的边缘值,实际上我试图删除不符合曲线的点。


另外,我可以观察曲线的形状并手动标记异常值,但确实很费时间。我将非常感谢你的帮助。


预期输出

我想将数据绘制成直线,并将离群值标记为点,例如:


    from matplotlib import pyplot as plt
    
    x = [22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50]
    y_NaOH = [94.2, 146.2, 222.2, 276.2, 336.2, 372.2, 428.2, 542.2, 576.2, 684.2, 766.2, 848.2, 904.2, 1042.2, 1136.2]
    y_NaHCO3 = [232.0, 308.0, 322.0, 374.0, 436.0, 494.0, 592.0, 660.0, 704.0, 824.0, 900.0, 958.0, 1048.0, 1138.0, 1232.0]
    y_BaOH2 = [493.1, 533.1, 549.1, 607.1, 665.1, 731.1, 797.1, 867.1, 971.1, 1007.1, 1091.1, 1221.1, 1311.1, 1371.1, 1497.1, ]
    
    o_NaOH = [542.2]
    o_NaHCO3 = [308.0]
    o_BaOH2 = [493.1]
    
    
    def sketch_rejected(xv, yv, y_out):
        nx = []
        ny = []
        x_out = []
        for ii, dd in enumerate(yv):
            if dd not in y_out:
                nx.append(xv[ii])
                ny.append(dd)
            else:
                x_out.append(xv[ii])
        plt.plot(nx, ny)
        plt.scatter(x_out, y_out)
    
    
    sketch_rejected(x, y_NaOH, o_NaOH)
    sketch_rejected(x, y_NaHCO3, o_NaHCO3)
    sketch_rejected(x, y_BaOH2, o_BaOH2)
    
    plt.show()

the outliers are the spiky parts of the curve which the dot doesn't fit the gradient.

我可以先使用模块回归数据,然后计算异常值,而不是手动绘制每个图形并识别异常值吗?

在现实生活中,我有大量的测试结果,但我不知道每一个的一般方程。

感谢您的帮助。

有很多 GitHub 数据科学存储库,您只需完成 git installation

使用outliers.py


    from outliers.variance import graph
    
    x = [22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50]
    y_NaOH = [94.2, 146.2, 222.2, 276.2, 336.2, 372.2, 428.2, 542.2, 576.2, 684.2, 766.2, 848.2, 904.2, 1042.2, 1136.2]
    y_NaHCO3 = [232.0, 308.0, 322.0, 374.0, 436.0, 494.0, 592.0, 660.0, 704.0, 824.0, 900.0, 958.0, 1048.0, 1138.0, 1232.0]
    y_BaOH2 = [493.1, 533.1, 549.1, 607.1, 665.1, 731.1, 797.1, 867.1, 971.1, 1007.1, 1091.1, 1221.1, 1311.1, 1371.1, 1497.1, ]
    
    graph(
        xs=x,
        ys=[y_NaOH, y_NaHCO3, y_BaOH2],
        title='title',
        legends=[f'legend {i + 1}' for i in range(len(x))],
        xlabel='xlabel',
        ylabel='ylabel',
    )