用于语义分割的 Pytorch 自定义 randomcrop
Pytorch custom randomcrop for semantic segmentation
我正在尝试实现自定义数据集加载器。首先,我以 (0.98, 1,1) 之间的相同比例调整图像和标签的大小,然后我随机裁剪具有相同参数的图像和标签,以便我可以将它们输入神经网络。但是,我从 PyTorch 函数中收到错误。这是我的代码:
class RandomCrop(object):
def __init__(self, size, padding=None, pad_if_needed=True, fill=0, padding_mode='constant'):
self.size = size
self.padding = padding
self.pad_if_needed = pad_if_needed
self.fill = fill
self.padding_mode = padding_mode
@staticmethod
def get_params(img, output_size):
w, h = img.size
th, tw = output_size
if w == tw and h == th:
return 0, 0, h, w
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
return i, j, th, tw
def __call__(self, data):
img,mask = data["image"],data["mask"]
# pad the width if needed
if self.pad_if_needed and img.size[0] < self.size[1]:
img = F.pad(img, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode)
mask = F.pad(mask, (self.size[1] - mask.size[0], 0), self.fill, self.padding_mode)
# pad the height if needed
if self.pad_if_needed and img.size[1] < self.size[0]:
img = F.pad(img, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode)
mask = F.pad(mask, (0, self.size[0] - mask.size[1]), self.fill, self.padding_mode)
i, j, h, w = self.get_params(img, self.size)
crop_image = transforms.functional.crop(img, i, j, h, w)
crop_mask = transforms.functional.crop(mask, i, j, h, w)
return{"image": crop_image, "mask": crop_mask }
这里是错误:
AttributeError: 'Image' object has no attribute 'dim'
我错误地导入了 nn.functional.pad 而不是 transforms.functional.pad。改完之后一切顺利
我正在尝试实现自定义数据集加载器。首先,我以 (0.98, 1,1) 之间的相同比例调整图像和标签的大小,然后我随机裁剪具有相同参数的图像和标签,以便我可以将它们输入神经网络。但是,我从 PyTorch 函数中收到错误。这是我的代码:
class RandomCrop(object):
def __init__(self, size, padding=None, pad_if_needed=True, fill=0, padding_mode='constant'):
self.size = size
self.padding = padding
self.pad_if_needed = pad_if_needed
self.fill = fill
self.padding_mode = padding_mode
@staticmethod
def get_params(img, output_size):
w, h = img.size
th, tw = output_size
if w == tw and h == th:
return 0, 0, h, w
i = random.randint(0, h - th)
j = random.randint(0, w - tw)
return i, j, th, tw
def __call__(self, data):
img,mask = data["image"],data["mask"]
# pad the width if needed
if self.pad_if_needed and img.size[0] < self.size[1]:
img = F.pad(img, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode)
mask = F.pad(mask, (self.size[1] - mask.size[0], 0), self.fill, self.padding_mode)
# pad the height if needed
if self.pad_if_needed and img.size[1] < self.size[0]:
img = F.pad(img, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode)
mask = F.pad(mask, (0, self.size[0] - mask.size[1]), self.fill, self.padding_mode)
i, j, h, w = self.get_params(img, self.size)
crop_image = transforms.functional.crop(img, i, j, h, w)
crop_mask = transforms.functional.crop(mask, i, j, h, w)
return{"image": crop_image, "mask": crop_mask }
这里是错误:
AttributeError: 'Image' object has no attribute 'dim'
我错误地导入了 nn.functional.pad 而不是 transforms.functional.pad。改完之后一切顺利