使用新日期作为预测扩展多索引数据框

Expanding multi-indexed dataframe with new dates as forecast

注意:我已经按照 Whosebug 的说明如何创建 MRE 并将 MRE 粘贴到 'code block' 中(即将其粘贴到 Body 中,然后在突出显示时按 Ctrl+K)。如果我仍然做错了,请告诉我。

回到问题:假设我现在在日期 (df['DT']) 和 ID (df['ID'])

中都有一个 df 多索引
DT,ID,value1,value2
2020-10-01,a,1,1
2020-10-01,b,2,1
2020-10-01,c,3,1
2020-10-01,d,4,1
2020-10-02,a,10,1
2020-10-02,b,11,1
2020-10-02,c,12,1
2020-10-02,d,13,1

df = df.set_index(['DT','ID'])

现在,我想扩展 df 以将“2020-10-03”和“2020-10-04”与我的预测期使用同一组 ID {a,b,c,d} .为了预测值 1,我假设他们将取现有值的平均值,例如对于 a 在 2020-10-03' 和 '2020-10-04' 中的值 1,我假设它将采用 (1+10)/2 = 5.5。对于值 2,我假设它将保持不变为 1。

预期的 df 将如下所示:

DT,ID,value1,value2
2020-10-01,a,1.0,1
2020-10-01,b,2.0,1
2020-10-01,c,3.0,1
2020-10-01,d,4.0,1
2020-10-02,a,10.0,1
2020-10-02,b,11.0,1
2020-10-02,c,12.0,1
2020-10-02,d,13.0,1
2020-10-03,a,5.5,1
2020-10-03,b,6.5,1
2020-10-03,c,7.5,1
2020-10-03,d,8.5,1
2020-10-04,a,5.5,1
2020-10-04,b,6.5,1
2020-10-04,c,7.5,1
2020-10-04,d,8.5,1

感谢您的帮助和时间。

平均使用方便预测DataFrame.unstack for DatetimeIndex, add next datetimes by DataFrame.reindex with date_range and then replace missing values in value1 level by DataFrame.fillna and for value2 is set 1, last reshape back by DataFrame.stack:

print (df)
               value1  value2
DT         ID                
2020-10-01 a        1       1
           b        2       1
           c        3       1
           d        4       1
2020-10-02 a       10       1
           b       11       1
           c       12       1
           d       13       1

rng = pd.date_range('2020-10-01','2020-10-04', name='DT')
df1 = df.unstack().reindex(rng)
df1['value1'] = df1['value1'].fillna(df1['value1'].mean())
df1['value2'] = 1

df2 = df1.stack()

print (df2)
               value1  value2
DT         ID                
2020-10-01 a      1.0       1
           b      2.0       1
           c      3.0       1
           d      4.0       1
2020-10-02 a     10.0       1
           b     11.0       1
           c     12.0       1
           d     13.0       1
2020-10-03 a      5.5       1
           b      6.5       1
           c      7.5       1
           d      8.5       1
2020-10-04 a      5.5       1
           b      6.5       1
           c      7.5       1
           d      8.5       1

但是预测比较复杂,可以查看this