如何修复 PyTorch 中预期的 CUDA got CPU 错误?

How can I fix this expected CUDA got CPU error in PyTorch?

我一直在努力寻找我的代码中的错误。我正在尝试实施 DCGAN 论文,从过去 2 天开始,我遇到了这些错误。谁能帮我解决这个问题?

我正在使用 GPU 运行时在 Google colab 上对此进行训练,但出现此错误。昨天,我实现了 Ian Goodfellow 的第一篇 GAN 论文,我没有遇到这个错误。我不知道发生了什么任何帮助将不胜感激。另外,请检查gen_input是否正确。

我已经问过这个问题了,没有人回复旧的post。一个人回复了它,但他所说的只是上下更改行,这也给出了同样的错误。请帮帮我 这是代码:

import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torchvision.utils import save_image
import torch.optim as optim

lr = 0.00002 #learning rate
nc = 3 #color channels
nz = 100 #size of latent vector or size of generator input
ngf = 64 #size of feature maps in generator
ndf = 64 #size of feature maps in discriminator
height = 128 #height of the image
width = 128 #width of the image
num_epochs = 5 #the variable name tells everything
workers = 2 #number of workers to load the data in batches
batch_size = 64 #batch size
image_size = 128 #resizing parameter
root = './simpsons/' #path to the training directory
beta1 = 0.5

img_shape = (nc, height, width)

class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.convt1 = nn.ConvTranspose2d(in_channels = nz, out_channels = ngf*8, kernel_size = 4, stride = 1, padding = 0, bias = False)
        self.convt2 = nn.ConvTranspose2d(in_channels = ngf*8, out_channels = ngf*4, kernel_size = 4, stride = 2, padding = 1, bias = False)
        self.convt3 = nn.ConvTranspose2d(in_channels = ngf*4, out_channels = ngf*2, kernel_size = 4, stride = 2, padding = 1, bias = False)
        self.convt4 = nn.ConvTranspose2d(in_channels = ngf*2, out_channels = ngf, kernel_size = 4, stride = 2, padding = 1, bias = False)
        self.convt5 = nn.ConvTranspose2d(in_channels = ngf, out_channels = 3, kernel_size=4, stride = 2, padding = 1, bias = False)

    def forward(self, t):
        t = self.convt1(t)
        t = nn.BatchNorm2d(t)
        t = F.relu(t)

        t = self.convt2(t)
        t = nn.BatchNorm2d(t)
        t = F.relu(t)

        t = self.convt3(t)
        t = nn.BatchNorm2d(t)
        t = F.relu(t)

        t = self.convt4(t)
        t = nn.BatchNorm2d(t)
        t = F.relu(t)

        t = self.convt5(t)
        t = F.tanh(t)

        return t

class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.conv1 = nn.Conv2d(in_channels = 3, out_channels = ndf, kernel_size = 4, stride = 2, padding = 1, bias = False)
        self.conv2 = nn.Conv2d(in_channels = ndf, out_channels = ndf*2, kernel_size = 4, stride = 2, padding = 1, bias = False)
        self.conv3 = nn.Conv2d(in_channels = ndf*2, out_channels = ndf*4, kernel_size = 4, stride = 2, padding = 1, bias = False)
        self.conv4 = nn.Conv2d(in_channels = ndf*4, out_channels = ndf*8, kernel_size = 4, stride = 2, padding = 1, bias = False)
        self.conv5 = nn.Conv2d(in_channels = ndf*8, out_channels = 1, kernel_size = 4, stride = 1, padding = 0, bias = False)

    def forward(self, t):
        t = self.conv1(t)
        t = F.leaky_relu(t, 0.2)

        t = self.conv2(t)
        t = nn.BatchNorm2d(t)
        t = F.leaky_relu(t, 0.2)

        t = self.conv3(t)
        t = nn.BatchNorm2d(t)
        t = F.leaky_relu(t, 0.2)

        t = self.conv4(t)
        t = nn.BatchNorm2d(t)
        t = F.leaky_relu(t, 0.2)

        t = self.conv5(t)
        t = F.sigmoid(t)

        return t

def weights_init(m):
    classname = m.__class__.__name__ #returns the class name(eg: Conv2d or ConvTranspose2d)
    if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02) #0.0 is mean and 0.02 is standard deviation
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(m.weight.data, 1, 0.02) #1 is mean and 0.02 is standard deviation
        nn.init.constant_(m.bias.data, 0.0)

def load_data(image_size, root):
    transform = transforms.Compose([
        transforms.Resize(image_size),
        transforms.ToTensor(),
        transforms.Normalize((0.486, 0.486, 0.486), (0.486, 0.486, 0.486))
        ])

    train_set = torchvision.datasets.ImageFolder(root = root, transform = transform)

    return train_set

#getting the batches of data
train_set = load_data(image_size, root)
dataloader = torch.utils.data.DataLoader(train_set, batch_size = batch_size, shuffle = True, num_workers = workers)

generator = Generator()
discriminator = Discriminator()

generator.apply(weights_init)
discriminator.apply(weights_init)

print(generator)
print(discriminator)

criterion = nn.BCELoss()

noise = torch.randn(64, nz, 1, 1)

optimizer_G = optim.Adam(generator.parameters(), lr = lr, betas=(beta1, 0.999))
optimizer_D = optim.Adam(discriminator.parameters(), lr = lr, betas=(beta1, 0.999))

if torch.cuda.is_available():
    print("CUDA available")
    generator = generator.to('cuda')
    discriminator = discriminator.to('cuda')
    criterion = criterion.cuda('cuda')
    Tensor = torch.cuda.FloatTensor
    print("Networks moved on to cuda")


for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(dataloader):
   
        val = Tensor(images.size(0), 1).fill_(1.0)
        fake = Tensor(images.size(0),1).fill_(0.0)
        
        real_images = images
        
        optimizer_G.zero_grad()
        
        gen_input = Tensor(np.random.normal(0,1,(512,100,4,4)))
        gen = generator(gen_input)
        
        g_loss = loss_func(discriminator(gen), val)
        
        g_loss.backward()
        optimizer_G.step()
        
        optimizer_D.zero_grad()
        
        real_loss = loss_func(discriminator(real_images), val)
        fake_loss = loss_func(discriminator(gen.detach()),fake)
        d_loss = (real_loss + fake_loss)/2
        
        d_loss.backward()
        optimizer_D.step()
        
        if i%900 == 0:
            print("[EPOCH %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f]"%(epoch, num_epochs, i, len(dataset), d_loss.item(), g_loss.item()))
        
        total_batch = epoch * len(dataset) + i
        if total_batch%400 == 0:
            save_image(gen.data[:25], 'output/%d.png' % total_batch, nrow=5)

这是错误:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-36-0af32f223344> in <module>()
     18         gen_input = gen_input.cuda()
     19         #we then pass it to generator()
---> 20         gen = generator(gen_input) #this returns a image
     21 
     22         #now calculate the loss wrt to discriminator output

/usr/local/lib/python3.6/dist-packages/torch/nn/modules/batchnorm.py in __init__(self, num_features, eps, momentum, affine, track_running_stats)
     40         self.track_running_stats = track_running_stats
     41         if self.affine:
---> 42             self.weight = Parameter(torch.Tensor(num_features))
     43             self.bias = Parameter(torch.Tensor(num_features))
     44         else:

TypeError: expected CPU (got CUDA)

如有任何帮助,我们将不胜感激。谢谢!

您使用 nn.BatchNorm2d 的方式有误。
BatchNorm 是一个层,就像 Conv2d 一样。它有内部参数和缓冲区。
因此,您必须在generator/discriminator的__init__中定义这些图层。
现在,您在 forward 通道中定义图层 - 这在很多方面都是错误的...