从 lmList 绘制 beta 系数?
Plotting beta coefficients from lmList?
我使用以下代码计算逻辑回归的系数:
model<-lmList(VariableD ~ VariableE + VariableF + VariableG | Participant, database, family = binomial(link = "logit"))
输出样本是:
(Intercept) VariableE VariableF VariableG
19 3.2665591 -0.0132012216 -0.25732617 0.26778854
20 -3.4393826 0.0194122526 1.03047235 0.78898713
21 1.2678461 -0.0010176256 0.09012313 -0.01289391
22 -0.7699174 0.0023954388 0.54327987 -0.31296745
23 1.3254696 -0.0034261267 -0.51176849 -0.71606725
24 -4.7511126 0.0435291070 0.31071099 0.10152898
25 0.4081270 0.0007494644 -0.16591073 -0.23714568
26 -2.7565715 0.0085388717 0.18503239 0.24941414
27 -2.2610725 0.0138908941 -0.34104256 -0.87318270
现在我想绘制这些值。谢谢!!
我们可以将数据转换为 'long' 格式,然后用 ggplot
绘图
library(dplyr)
library(tidyr)
library(ggplot2)
model %>%
coef(.) %>%
mutate(rn = row_number()) %>%
pivot_longer(cols = -rn) %>%
ggplot(aes(x = rn, y = value, color = name)) +
geom_line()
我使用以下代码计算逻辑回归的系数:
model<-lmList(VariableD ~ VariableE + VariableF + VariableG | Participant, database, family = binomial(link = "logit"))
输出样本是:
(Intercept) VariableE VariableF VariableG
19 3.2665591 -0.0132012216 -0.25732617 0.26778854
20 -3.4393826 0.0194122526 1.03047235 0.78898713
21 1.2678461 -0.0010176256 0.09012313 -0.01289391
22 -0.7699174 0.0023954388 0.54327987 -0.31296745
23 1.3254696 -0.0034261267 -0.51176849 -0.71606725
24 -4.7511126 0.0435291070 0.31071099 0.10152898
25 0.4081270 0.0007494644 -0.16591073 -0.23714568
26 -2.7565715 0.0085388717 0.18503239 0.24941414
27 -2.2610725 0.0138908941 -0.34104256 -0.87318270
现在我想绘制这些值。谢谢!!
我们可以将数据转换为 'long' 格式,然后用 ggplot
library(dplyr)
library(tidyr)
library(ggplot2)
model %>%
coef(.) %>%
mutate(rn = row_number()) %>%
pivot_longer(cols = -rn) %>%
ggplot(aes(x = rn, y = value, color = name)) +
geom_line()