Scala spark:如何训练分布式稀疏回归模型?

Scala spark: How to train a distributed sparse regression model?

我正在尝试构建一个回归模型,其中基础特征矩阵非常大(73K 列上有 418K 行)并且非常稀疏(58M 非零值,大约占整个矩阵的 0.2%)。

我将矩阵坐标表示为 DataFrame,其中第一列是行坐标 i,第二列是列坐标 j,第三列是 {i,j} 中的值第 th 个位置。

例如以下矩阵:

+-+-+-+
|0|1|0|
|2|0|0|
|0|0|3|
+-+-+-+

表示为

+-+-+-----+
|i|j|value|
+-+-+-----+
|0|1| 1   |
|1|0| 2   |
|2|2| 3   |
+-+-+-----+

我有一个单独的 DataFrame,其中包含每一行的标签 i

如果可能的话,我希望解决方案使用较新的 ml 库而不是较旧的 mllib

下面我给出一个小代码示例,说明如何在spark ml中实现分布式稀疏线性回归。我已经在大型集群(Databricks Runtime 版本 6.5 ML - 包括 Apache Spark 2.4.5、Scala 2.11)上将它与相关矩阵一起使用,因此它可以很好地扩展并且只需几分钟即可执行。

import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import org.apache.spark.sql.expressions.UserDefinedFunction
import org.apache.spark.sql.Dataset
import org.apache.spark.ml.linalg.SparseVector
import org.apache.spark.ml.feature.LabeledPoint
import spark.implicits._
import org.apache.spark.ml.regression.LinearRegression

// Construct Matrix coordinate representation DataFrame
val df = Seq(
  (0, 1, 14.0), 
  (0, 0, 13.0), 
  (1, 1, 11.0)
).toDF("i", "j", "value")

df.show()

+---+---+-----+
|  i|  j|value|
+---+---+-----+
|  0|  1| 14.0|
|  0|  0| 13.0|
|  1|  1| 11.0|
+---+---+-----+

// Construct label DataFrame
val df_label = Seq(
  (0, 41.1), 
  (1, 21.9) // beta_1 = 1, beta_2 = 2
).toDF("i", "label")

df_label.show()

+---+-----+
|  i|label|
+---+-----+
|  0| 41.1|
|  1| 21.9|
+---+-----+

// Use a UDF to sort arrays below
val sortUdf: UserDefinedFunction = udf((rows: Seq[Row]) => {
  rows.map { case Row(j: Int, value: Double) => (j, value) }
    .sortBy { case (j, value) => j }
})

// collect j and value columns to lists, make sure they are sorted by j
// then join with labels
val df_collected_with_labels = df
.groupBy("i")
.agg(collect_list(struct("j", "value")) as "j_value")
.select($"i", sortUdf(col("j_value")).alias("j_value_list"))
.withColumn("j_list", $"j_value_list".getField("_1"))
.withColumn("value_list", $"j_value_list".getField("_2"))
.drop("j_value_list")
.join(df_label, "i")

df_collected_with_labels.show()
+---+------+------------+-----+
|  i|j_list|  value_list|label|
+---+------+------------+-----+
|  1|   [1]|      [11.0]| 21.9|
|  0|[0, 1]|[13.0, 14.0]| 41.1|
+---+------+------------+-----+

val unique_j = df.dropDuplicates("j").count().toInt

val sparse_df = df_collected_with_labels
.map(r => LabeledPoint(r.getDouble(3), 
                       new SparseVector(size = unique_j, 
                                        indices = r.getAs[Seq[Int]]("j_list").toArray, 
                                        values = r.getAs[Seq[Double]]("value_list").toArray)))

sparse_df.show()

+-----+--------------------+
|label|            features|
+-----+--------------------+
| 21.9|      (2,[1],[11.0])|
| 41.1|(2,[0,1],[13.0,14...|
+-----+--------------------+

// Fit sparse regression!
val lr = new LinearRegression()
.setFitIntercept(false)

val lrModel = lr.fit(sparse_df)

lrModel.coefficients
org.apache.spark.ml.linalg.Vector = [1.0174825174825193,1.9909090909090894]

lrModel.predict(new SparseVector(size = unique_j, indices = Array(0), values = Array(4.0)))
Double = 4.069930069930077