Could not load dynamic library 'libcublas.so.10'; dlerror: libcublas.so.10: cannot open shared object file: No such file or directory;

Could not load dynamic library 'libcublas.so.10'; dlerror: libcublas.so.10: cannot open shared object file: No such file or directory;

当我尝试 运行 使用 tensorflow 的 python 脚本时,它显示以下错误...

2020-10-04 16:01:44.994797: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1
2020-10-04 16:01:46.780656: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcuda.so.1
2020-10-04 16:01:46.795642: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 0 with properties: 
pciBusID: 0000:03:00.0 name: TITAN X (Pascal) computeCapability: 6.1
coreClock: 1.531GHz coreCount: 28 deviceMemorySize: 11.91GiB deviceMemoryBandwidth: 447.48GiB/s
2020-10-04 16:01:46.795699: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudart.so.10.1
2020-10-04 16:01:46.795808: W tensorflow/stream_executor/platform/default/dso_loader.cc:59] Could not load dynamic library 'libcublas.so.10'; dlerror: libcublas.so.10: cannot open shared object file: No such file or directory; LD_LIBRARY_PATH: /usr/local/cuda/extras/CUPTI/lib64/:/usr/local/cuda-10.0/lib64
2020-10-04 16:01:46.797391: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcufft.so.10
2020-10-04 16:01:46.797707: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcurand.so.10
2020-10-04 16:01:46.799529: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusolver.so.10
2020-10-04 16:01:46.800524: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcusparse.so.10
2020-10-04 16:01:46.804150: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic library libcudnn.so.7
2020-10-04 16:01:46.804169: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1753] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.
Skipping registering GPU devices...

nvidia-smi 的输出

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 455.23.05    Driver Version: 455.23.05    CUDA Version: 11.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  TITAN X (Pascal)    On   | 00000000:03:00.0 Off |                  N/A |
| 23%   28C    P8     9W / 250W |     18MiB / 12194MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A      1825      G   /usr/lib/xorg/Xorg                  9MiB |
|    0   N/A  N/A      1957      G   /usr/bin/gnome-shell                6MiB |
+-----------------------------------------------------------------------------+

Tensorflow 版本 2.3.1, Ubuntu - 18.04

我尝试完全删除cuda工具包并从头开始安装,但错误仍然存​​在。 谁能帮我找出问题的根源??

当您 运行 tensorflow 使用不兼容的 CUDA 版本时,通常会发生这种情况。看起来这已经被问过(无法发表评论)。参考 个问题。

在 Ubuntu 20.04 上,您只需安装 NVIDIAs cuda toolkit cuda:

sudo apt-get update
sudo apt install nvidia-cuda-toolkit

还有install advices for Windows.

包大约 1GB,安装需要一段时间...几分钟后您需要 export PATH 变量以便找到它:

  1. 查找共享对象
sudo find / -name 'libcudart.so*'

/usr/lib/x86_64-linux-gnu/libcudart.so.10.1
/usr/lib/x86_64-linux-gnu/libcudart.so
  1. 将文件夹添加到 path,以便 python 找到它
export PATH=/usr/lib/x86_64-linux-gnu${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/lib/x86_64-linux-gnu:${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
  1. 权限
sudo chmod a+r /usr/lib/x86_64-linux-gnu/libcuda*

你必须download/update Cuda

如果您正在寻找 CUDA 工具包 10.2 下载,请使用此 link: https://developer.nvidia.com/cuda-10.2-download-archive

然后激活虚拟环境并设置LD_LIBRARY_PATH,例子:

请运行这些命令。这将解决问题

wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-ubuntu1804.pin

sudo mv cuda-ubuntu1804.pin /etc/apt/preferences.d/cuda-repository-pin-600

sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub

sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/ /"

sudo apt-get 更新

sudo apt-get -y 安装 cuda

这对我有用:

sudo apt-get install libcudart10.1

今天我遇到了这个问题。我去了 CUDA toolkit website,选择了选项,然后显示了一些这样的说明:

wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin
sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/11.6.2/local_installers/cuda-repo-ubuntu2004-11-6-local_11.6.2-510.47.03-1_amd64.deb
sudo dpkg -i cuda-repo-ubuntu2004-11-6-local_11.6.2-510.47.03-1_amd64.deb
sudo apt-key add /var/cuda-repo-ubuntu2004-11-6-local/7fa2af80.pub
sudo apt-get update
sudo apt-get -y install cuda         # I have broken packages, so could not invoke this command

因此说明会根据您的规格而改变,请勿从 here/other Whosebug 答案中复制。

我无法调用最后一个命令,但经过反复试验,我调用了:

sudo apt install libcudart.so.11.0   # this worked for me!

这对我有用!