X = X.toarray() NameError: name 'X' is not defined. when loading dataset using load_svmlight_file() trying to convert X to ndarray
X = X.toarray() NameError: name 'X' is not defined. when loading dataset using load_svmlight_file() trying to convert X to ndarray
from sklearn.datasets import load_svmlight_file
def get_data(dn):
# load_svmlight_file loads dataset into sparse CSR matrix
X,Y = load_svmlight_file(dn)
print(type(X)) # you will get numpy.ndarray
return X,Y
# convert X to ndarray
X = X.toarray()
print(type(X))
# As you are going to implement logistic regression, you have to convert the labels into 0 and 1
Y = np.where(Y == -1, 0, 1)
当运行代码出现以下错误X = X.toarray() NameError: name 'X' is not defined
时,代码是为了转换此数据集url= 'https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/diabetes'
wget.download(url,'Assingment1')
您没有先调用 get_data(dn) 函数,您需要在将 X 转换为数组之前先调用它。
应该是这样的:
from sklearn.datasets import load_svmlight_file
def get_data(dn):
# load_svmlight_file loads dataset into sparse CSR matrix
X,Y = load_svmlight_file(dn)
print(type(X)) # you will get numpy.ndarray
return X,Y
# X, Y = get_data(dn) uncomment this code and pass the dn parameter you want.
# convert X to ndarray
X = X.toarray()
print(type(X))
# As you are going to implement logistic regression, you have to convert the
labels into 0 and 1
Y = np.where(Y == -1, 0, 1)
取消第8行函数调用的注释,将dn参数传给它,然后定义X和Y。
from sklearn.datasets import load_svmlight_file
def get_data(dn):
# load_svmlight_file loads dataset into sparse CSR matrix
X,Y = load_svmlight_file(dn)
print(type(X)) # you will get numpy.ndarray
return X,Y
# convert X to ndarray
X = X.toarray()
print(type(X))
# As you are going to implement logistic regression, you have to convert the labels into 0 and 1
Y = np.where(Y == -1, 0, 1)
当运行代码出现以下错误X = X.toarray() NameError: name 'X' is not defined
时,代码是为了转换此数据集url= 'https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/diabetes'
wget.download(url,'Assingment1')
您没有先调用 get_data(dn) 函数,您需要在将 X 转换为数组之前先调用它。
应该是这样的:
from sklearn.datasets import load_svmlight_file
def get_data(dn):
# load_svmlight_file loads dataset into sparse CSR matrix
X,Y = load_svmlight_file(dn)
print(type(X)) # you will get numpy.ndarray
return X,Y
# X, Y = get_data(dn) uncomment this code and pass the dn parameter you want.
# convert X to ndarray
X = X.toarray()
print(type(X))
# As you are going to implement logistic regression, you have to convert the
labels into 0 and 1
Y = np.where(Y == -1, 0, 1)
取消第8行函数调用的注释,将dn参数传给它,然后定义X和Y。