Asyncpg 池等待所有结果

Asyncpg pool waits for all results

我使用 asyncpg 进行繁重的查询,通常需要大约 15-20 秒的时间来计算。我正在试验池的最小和最大大小,并注意到一个奇怪的行为。当我尝试发出多个请求时,它们是同时执行的,但结果是 return 批处理。批处理始终与池大小相同。此行为会导致第一次响应时间过长,例如 50 秒左右。第一批之后,我需要再等 50 秒才能得到其他结果。似乎 asyncpg 等待从池中收集所有结果并 return 它们,而不是在它们准备好后立即 returning 结果。

有没有办法让单个请求一执行就得到结果?也许我缺少某些设置?

有一段时间我可以保持 25 个连接,但这似乎是一种 hack,我真的不喜欢。

如果这很重要,我会使用 DSN 创建池。

db_pool = await asyncpg.create_pool(loop=self._loop, **params)

这是我用来向数据库发出请求的代码:

    async def first(self, query: str, values: List, db_name: str = 'default'):
        pool = self.get_pool(db_name)

        async with pool.acquire() as conn:
            return await conn.fetchrow(query, *values)

现在我正在测试默认池大小(最大 10,10 分钟)并同时发送 25 个请求。

result for 336997:  45.43796348571777 s
result for 368406:  45.43796348571777 s
result for 288307:  45.81912803649902 s
result for 283236:  46.499717235565186 s
result for 296000:  49.140310764312744 s
result for 304671:  49.20531177520752 s
result for 283685:  49.26837992668152 s
result for 283772:  49.3363881111145 s
result for 283720:  49.3753764629364 s
result for 294811:  49.39737892150879 s
result for 325604:  112.60201215744019 s
result for 336997:  112.60101222991943 s
result for 283028:  112.62509346008301 s
result for 291122:  113.41229104995728 s
result for 281105:  115.48561716079712 s
result for 304874:  115.59060764312744 s
result for 281875:  115.73372554779053 s
result for 283219:  115.73472547531128 s
result for 312094:  116.00303101539612 s
result for 312094:  116.0290174484253 s
result for 368406:  157.77449679374695 s
result for 325604:  157.77449679374695 s
result for 281932:  157.79654741287231 s
result for 290687:  157.79554748535156 s
result for 304874:  158.38678884506226 s

如果我将最大值和最小值设置为 25,当我得到这些结果时:

result for 368406:  96.23042106628418 s
result for 368406:  96.22842144966125 s
result for 283236:  97.59920930862427 s
result for 304671:  99.69211030006409 s
result for 281932:  107.54676508903503 s
result for 283685:  107.95523738861084 s
result for 281875:  108.28549408912659 s
result for 283720:  108.39060115814209 s
result for 283028:  108.388601064682 s
result for 296000:  108.44459056854248 s
result for 283772:  108.55759739875793 s
result for 291122:  108.59360837936401 s
result for 294811:  108.90663266181946 s
result for 336997:  109.07162356376648 s
result for 325604:  109.07562470436096 s
result for 325604:  109.17762279510498 s
result for 336997:  109.30463767051697 s
result for 312094:  109.40563464164734 s
result for 312094:  109.40663456916809 s
result for 281105:  109.63970899581909 s
result for 290687:  109.66070008277893 s
result for 304874:  109.66170001029968 s
result for 288307:  109.68773555755615 s
result for 304874:  109.68273568153381 s
result for 283219:  109.68573522567749 s

5/5 连接带来糟糕的结果

result for 288307:  38.87580060958862 s
result for 325604:  38.87280225753784 s
result for 283219:  38.87380290031433 s
result for 283772:  38.98385691642761 s
result for 304671:  39.80011057853699 s
result for 368406:  94.94180464744568 s
result for 283720:  94.94180464744568 s
result for 296000:  94.98080492019653 s
result for 294811:  95.45388603210449 s
result for 283685:  95.85135459899902 s
result for 291122:  156.6862394809723 s
result for 325604:  156.68523907661438 s
result for 336997:  156.68724012374878 s
result for 304874:  156.8772156238556 s
result for 283236:  157.72206735610962 s
result for 336997:  219.94082736968994 s
result for 368406:  219.96384191513062 s
result for 312094:  220.39882922172546 s
result for 281105:  220.8170771598816 s
result for 283028:  221.18352794647217 s
result for 290687:  283.105571269989 s
result for 281932:  283.10657024383545 s
result for 304874:  283.105571269989 s
result for 281875:  283.21556425094604 s
result for 312094:  283.7060844898224 s

每个查询只在等待自己的结果。如果所有查询花费的工作量大致相同,那么它们(实际上是 运行 的查询)都在大约相同的时间后完成。无论如何也不是那么相似,从 45.4 到 49.4 的差距并不小。如果它以某种方式故意同步它们,您会认为它会做得更好。

For some time I could keep 25 connections, but it seems like a hack, which I really don't like.

你更愿意做什么?使用较低的数字?更高的?一个每分钟都在变化的随机数?您应该限制连接池。为什么 25 是黑客攻击而其他一些数字却不是?

这是数据库端的问题,我们不得不增加资源来解决这个问题。