你如何在 SSE2 上做带符号的 32 位扩展乘法?
How do you do signed 32bit widening multiplication on SSE2?
在查看扩展乘法的 WebAssembly SIMD 提议时提出了这个问题。
为了支持较旧的硬件,我们需要支持 SSE2,并且 32 位整数的唯一向量乘法运算是 pmuludq
. (Signed pmuldq
仅在 SSE4.1 中添加)
(非加宽相对容易;随机输入 2x pmuludq
并取 4 个结果的低半部分来模拟 SSE4.1 pmulld
)。
在##asm 上大声呼喊@GeDaMo 帮助提出这个解决方案。
Godbolt
C/C++:
#include <xmmintrin.h>
#include <stdint.h>
#include <tmmintrin.h>
#include <smmintrin.h>
#include <cstdio>
typedef int32_t int32x4_t __attribute__((vector_size(16))) __attribute__((aligned(16)));
typedef int64_t int64x2_t __attribute__((vector_size(16))) __attribute__((aligned(16)));
int64x2_t multiply32_low_s(int32x4_t a, int32x4_t b) {
auto aSigns = a >> 31;
auto bSigns = b >> 31;
auto aInt = a ^ aSigns;
aInt -= aSigns;
auto bInt = b ^ bSigns;
bInt -= bSigns;
const auto shuffleMask = _MM_SHUFFLE(1,1,0,0);
auto absProd = _mm_mul_epu32(_mm_shuffle_epi32((__m128i)aInt, shuffleMask), _mm_shuffle_epi32((__m128i)bInt, shuffleMask));
auto aSignsInt = _mm_shuffle_epi32((__m128i)aSigns, shuffleMask);
auto bSignsInt = _mm_shuffle_epi32((__m128i)bSigns,shuffleMask);
auto prodSigns = aSignsInt ^ bSignsInt;
absProd ^= prodSigns;
absProd -= prodSigns;
return (int64x2_t)absProd;
}
int64x2_t multiply32_high_s(int32x4_t a, int32x4_t b) {
auto aSigns = a >> 31;
auto bSigns = b >> 31;
auto aInt = a ^ aSigns;
aInt -= aSigns;
auto bInt = b ^ bSigns;
bInt -= bSigns;
const auto shuffleMask = _MM_SHUFFLE(3,3,2,2);
auto absProd = _mm_mul_epu32(_mm_shuffle_epi32((__m128i)aInt, shuffleMask), _mm_shuffle_epi32((__m128i)bInt, shuffleMask));
auto aSignsInt = _mm_shuffle_epi32((__m128i)aSigns, shuffleMask);
auto bSignsInt = _mm_shuffle_epi32((__m128i)bSigns,shuffleMask);
auto prodSigns = aSignsInt ^ bSignsInt;
absProd ^= prodSigns;
absProd -= prodSigns;
return (int64x2_t)absProd;
}
int main(int argc, char* argv[]) {
int32x4_t a{-5,500,-5000,50000};
int32x4_t b{10,-100,-5000,500000000};
auto c = multiply32_low_s(a,b);
auto d = multiply32_high_s(a,b);
printf("%ld %ld\n", c[0],c[1]);
printf("%ld %ld\n", d[0],d[1]);
}
大会
multiply32_low_s(int __vector(4), int __vector(4)):
movdqa xmm3,xmm0
movdqa xmm2,xmm1
psrad xmm3,0x1f
psrad xmm2,0x1f
pxor xmm0,xmm3
pxor xmm1,xmm2
psubd xmm1,xmm2
psubd xmm0,xmm3
pshufd xmm2,xmm2,0x50
pshufd xmm1,xmm1,0x50
pshufd xmm0,xmm0,0x50
pshufd xmm3,xmm3,0x50
pmuludq xmm0,xmm1
pxor xmm2,xmm3
pxor xmm0,xmm2
psubq xmm0,xmm2
ret
nop WORD PTR [rax+rax*1+0x0]
multiply32_high_s(int __vector(4), int __vector(4)):
movdqa xmm3,xmm0
movdqa xmm2,xmm1
psrad xmm3,0x1f
psrad xmm2,0x1f
pxor xmm0,xmm3
pxor xmm1,xmm2
psubd xmm1,xmm2
psubd xmm0,xmm3
pshufd xmm2,xmm2,0xfa
pshufd xmm1,xmm1,0xfa
pshufd xmm0,xmm0,0xfa
pshufd xmm3,xmm3,0xfa
pmuludq xmm0,xmm1
pxor xmm2,xmm3
pxor xmm0,xmm2
psubq xmm0,xmm2
ret
nop WORD PTR [rax+rax*1+0x0]
mulhs(a, b) = mulhu(a, b) - (a < 0 ? b : 0) - (b < 0 ? a : 0)
使用它,两个签名的 double-width 产品可以像这样计算,
__m128i mul_epi32(__m128i a, __m128i b) {
a = _mm_shuffle_epi32(a, _MM_SHUFFLE(3, 1, 1, 0));
b = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 1, 1, 0));
__m128i unsignedProduct = _mm_mul_epu32(a, b);
__m128i threshold = _mm_set_epi32(INT_MIN, 0, INT_MIN, 0);
__m128i signA = _mm_cmplt_epi32(a, threshold);
__m128i signB = _mm_cmplt_epi32(b, threshold);
__m128i x = _mm_shuffle_epi32(_mm_and_si128(signA, b), _MM_SHUFFLE(2, 3, 0, 1));
__m128i y = _mm_shuffle_epi32(_mm_and_si128(signB, a), _MM_SHUFFLE(2, 3, 0, 1));
return _mm_sub_epi32(_mm_sub_epi32(unsignedProduct, x), y);
}
与其他提案相比,这节省了一些操作,但它非常接近,现在它包含一个负载,如果此代码是冷的,这可能会很糟糕。
在查看扩展乘法的 WebAssembly SIMD 提议时提出了这个问题。
为了支持较旧的硬件,我们需要支持 SSE2,并且 32 位整数的唯一向量乘法运算是 pmuludq
. (Signed pmuldq
仅在 SSE4.1 中添加)
(非加宽相对容易;随机输入 2x pmuludq
并取 4 个结果的低半部分来模拟 SSE4.1 pmulld
)。
在##asm 上大声呼喊@GeDaMo 帮助提出这个解决方案。
Godbolt
C/C++:
#include <xmmintrin.h>
#include <stdint.h>
#include <tmmintrin.h>
#include <smmintrin.h>
#include <cstdio>
typedef int32_t int32x4_t __attribute__((vector_size(16))) __attribute__((aligned(16)));
typedef int64_t int64x2_t __attribute__((vector_size(16))) __attribute__((aligned(16)));
int64x2_t multiply32_low_s(int32x4_t a, int32x4_t b) {
auto aSigns = a >> 31;
auto bSigns = b >> 31;
auto aInt = a ^ aSigns;
aInt -= aSigns;
auto bInt = b ^ bSigns;
bInt -= bSigns;
const auto shuffleMask = _MM_SHUFFLE(1,1,0,0);
auto absProd = _mm_mul_epu32(_mm_shuffle_epi32((__m128i)aInt, shuffleMask), _mm_shuffle_epi32((__m128i)bInt, shuffleMask));
auto aSignsInt = _mm_shuffle_epi32((__m128i)aSigns, shuffleMask);
auto bSignsInt = _mm_shuffle_epi32((__m128i)bSigns,shuffleMask);
auto prodSigns = aSignsInt ^ bSignsInt;
absProd ^= prodSigns;
absProd -= prodSigns;
return (int64x2_t)absProd;
}
int64x2_t multiply32_high_s(int32x4_t a, int32x4_t b) {
auto aSigns = a >> 31;
auto bSigns = b >> 31;
auto aInt = a ^ aSigns;
aInt -= aSigns;
auto bInt = b ^ bSigns;
bInt -= bSigns;
const auto shuffleMask = _MM_SHUFFLE(3,3,2,2);
auto absProd = _mm_mul_epu32(_mm_shuffle_epi32((__m128i)aInt, shuffleMask), _mm_shuffle_epi32((__m128i)bInt, shuffleMask));
auto aSignsInt = _mm_shuffle_epi32((__m128i)aSigns, shuffleMask);
auto bSignsInt = _mm_shuffle_epi32((__m128i)bSigns,shuffleMask);
auto prodSigns = aSignsInt ^ bSignsInt;
absProd ^= prodSigns;
absProd -= prodSigns;
return (int64x2_t)absProd;
}
int main(int argc, char* argv[]) {
int32x4_t a{-5,500,-5000,50000};
int32x4_t b{10,-100,-5000,500000000};
auto c = multiply32_low_s(a,b);
auto d = multiply32_high_s(a,b);
printf("%ld %ld\n", c[0],c[1]);
printf("%ld %ld\n", d[0],d[1]);
}
大会
multiply32_low_s(int __vector(4), int __vector(4)):
movdqa xmm3,xmm0
movdqa xmm2,xmm1
psrad xmm3,0x1f
psrad xmm2,0x1f
pxor xmm0,xmm3
pxor xmm1,xmm2
psubd xmm1,xmm2
psubd xmm0,xmm3
pshufd xmm2,xmm2,0x50
pshufd xmm1,xmm1,0x50
pshufd xmm0,xmm0,0x50
pshufd xmm3,xmm3,0x50
pmuludq xmm0,xmm1
pxor xmm2,xmm3
pxor xmm0,xmm2
psubq xmm0,xmm2
ret
nop WORD PTR [rax+rax*1+0x0]
multiply32_high_s(int __vector(4), int __vector(4)):
movdqa xmm3,xmm0
movdqa xmm2,xmm1
psrad xmm3,0x1f
psrad xmm2,0x1f
pxor xmm0,xmm3
pxor xmm1,xmm2
psubd xmm1,xmm2
psubd xmm0,xmm3
pshufd xmm2,xmm2,0xfa
pshufd xmm1,xmm1,0xfa
pshufd xmm0,xmm0,0xfa
pshufd xmm3,xmm3,0xfa
pmuludq xmm0,xmm1
pxor xmm2,xmm3
pxor xmm0,xmm2
psubq xmm0,xmm2
ret
nop WORD PTR [rax+rax*1+0x0]
mulhs(a, b) = mulhu(a, b) - (a < 0 ? b : 0) - (b < 0 ? a : 0)
使用它,两个签名的 double-width 产品可以像这样计算,
__m128i mul_epi32(__m128i a, __m128i b) {
a = _mm_shuffle_epi32(a, _MM_SHUFFLE(3, 1, 1, 0));
b = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 1, 1, 0));
__m128i unsignedProduct = _mm_mul_epu32(a, b);
__m128i threshold = _mm_set_epi32(INT_MIN, 0, INT_MIN, 0);
__m128i signA = _mm_cmplt_epi32(a, threshold);
__m128i signB = _mm_cmplt_epi32(b, threshold);
__m128i x = _mm_shuffle_epi32(_mm_and_si128(signA, b), _MM_SHUFFLE(2, 3, 0, 1));
__m128i y = _mm_shuffle_epi32(_mm_and_si128(signB, a), _MM_SHUFFLE(2, 3, 0, 1));
return _mm_sub_epi32(_mm_sub_epi32(unsignedProduct, x), y);
}
与其他提案相比,这节省了一些操作,但它非常接近,现在它包含一个负载,如果此代码是冷的,这可能会很糟糕。