如何使用 Pandas 中的模块 melt 高效地熔化多列?

How to efficiently melt multiple columns using the module melt in Pandas?

objective 是对下面的 table

  Activity General  m1   t1  m2   t2  m3   t3
0       P1      AA  A1  TA1  A2  TA2  A3  TA3
1       P2      BB  B1  TB1  B2  TB2  B3  TB3

变成如下格式

    Activity   General M Task
0   P1 AA A1  TA1 
1   P1 AA A2  TA2 
2   P1 AA A3  TA3 
3   P2 BB B1  TB1 
4   P2 BB B2  TB2
5   P2 BB B3  TB3

根据一些阅读,模块 melt 可用于实现所需的 objective。

import pandas as pd
from pandas import DataFrame
list_me = [['P1','AA','A1','TA1','A2','TA2','A3','TA3'],
           ['P2', 'BB', 'B1', 'TB1', 'B2', 'TB2', 'B3', 'TB3']]

df = DataFrame (list_me)
df.columns = ['Activity','General','m1','t1','m2','t2','m3','t3']   
melted_form=pd.melt(df, id_vars=['Activity','General'],var_name='m1',value_name='new_col')

然而,在网上找到的大多数示例都是针对单列的。我正在考虑使用 for 循环来循环 m1 m2m3 并同时合并结果。这是因为,实际上,m_i 和 t_i 这对的范围是数百(其中 i 是索引)

但是,我想知道还有比循环更有效的方法。

p.s。我曾尝试过 中的建议,但是,它没有给出预期的输出

如果我理解你的问题,你可以使用 pd.wide_to_long :

    (pd.wide_to_long(df, 
                    i=["Activity", "General"], 
                    stubnames=["t", "m"], j="number")
    .set_axis(["Task", "M"], axis="columns")
    .droplevel(-1).reset_index()
     )

    Activity    General Task    M
0      P1       AA      TA1     A1
1      P1       AA      TA2     A2
2      P1       AA      TA3     A3
3      P2       BB      TB1     B1
4      P2       BB      TB2     B2
5      P2       BB      TB3     B3